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/, An Overview of Different Approaches to 
Studyhg Chemistry in Solution 

This paper is a report on the state of the art and 
on the perspectives of the theoretical treatments of 
solvent effects, based on continuum models. We feel 
that such a review may represent a useful comple- 
ment to an issue of Chemical Reviews devoted to the 
description and understanding of noncovalent mo- 
lecular interactions. In fact, a solution may be 
considered, prima facie, as a large assembly of 
molecules held together by noncovalent interac- 
tions: under this point of view, an investigation of 
such interactions in physical systems of increasing 
complexity should start  with dimers, continue through 
larger clusters, and end with solutions. The methods 
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Actually, solutions are more complex than as- 
semblies of weakly interacting molecules, and, in 
particular, the study of reactivity in the presence of 
a solvent cannot be reduced to that of noncovalent 
interactions. The approaches we shall consider are 
also addressed to the description of chemical reac- 
tions in solution. A proper understanding of such 
phenomena is the ultimate goal of theoretical chem- 
istry in this field; models and computational tech- 
niques should allow the prediction of rates, mecha- 
nisms, and other features of specific processes 
occurring in solutions. These goals require the 
evaluation of many physicochemical properties, both 
of local and of macroscopic character. The continuum 
approach we shall consider here may give some 
contributions in this field, but it is evident that it 
cannot cover the whole range of properties and 
phenomena of interest. Its combination with other 
methods is necessary in many cases, and some 
promising results have already been obtained, as we 
shall see in the following pages. However, the 
elaboration of multiapproach strategies is still in its 
infancy, and we hope that the present review will 
provide a stimulus to proceed further in this direc- 
tion. 

The noticeable evolution of the continuum models 
in recent years parallels evolutions of comparable 
importance in other theoretical approaches for the 
study of liquid systems. This fact makes the tradi- 
tional classification of these methods incomplete and 
partially misleading. It is however convenient to 
report a classification in the "old style" and to show 
where and why it should be revised. 

The "old style" classification may be reduced to four 
groups of approaches: (a) methods based on the 
elaboration of physical functions, (b) methods based 
on computer simulations of liquids, (e) methods based 
on the continuum (electrostatic) model, and (d) 
methods based on a supermolecule description of the 
solution. 

In the first group, we include the approaches based 
on the vinal expansion of the equation of state' and 
on the corresponding expansion of the distribution 
functions of the molecules forming the condensed 
system. Also belonging to this group are the integral 
equation descriptions of correlation functions, and the 
methods based on perturbation theory applied to 
physically simple reference systems (Yvon? Bom- 
Green,3.4 Perc~s-Yevick~) and related approaches, 
such as the scaled particle theory (Reiss6-*). Last 
comes the reference interaction-site model (RISM, 
Chandler and Andersen9, later extended for the 
treatment of polar and ionic systems (XRISM, Rnssky 
and co-workerslO). An excellent and authoritative 
review of these approaches has been done by Barker 
and Henderson." The emphasis here is placed on 
the physical aspects of the problem, and for many 
years the evolution of these methods has been based 
on the use of drastically simplified expressions of the 
intermolecular interaction potentials. The chemical 
aspects of the problem have been relegated in the 
background. 

In the second group, b, we collect the Monte Car10'~ 
(Metropolis, 1953) and the molecular dynami~s '~J~  
(Alder and Wainwright, 1957; Rahman and Still- 
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based on the explicit description of a subunit of the 
whole solution (the "solute" M), and representing the 
other components (the "solvent" S)  with an interac- 
tion potential '/in,, have the appropriate features to 
be inserted in this ideal line of studies. We shall 
focus our attention on such methods, without ne- 
glecting other approaches giving access to the same 
kind of information. 
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while the chemical or physicochemical aspects were 
dealt with by continuum models, supplemented by 
indirect evidence based on supermolecule studies. 

The changes that have occurred subsequently may 
be ascribed to a tendency to pay more attention to 
the molecular aspects of the models; all methods are 
acquiring a more evident chemical flavor. Similar 
mechanisms of birth and development of other meth- 
ods of theoretical chemistry have been active in the 
past. In fact, theoretical chemistry has derived its 
conceptual and methodological tools from theoretical 
physics, but it has been able to elaborate them within 
a chemical approach. Attention is focused on the 
dependence of the behavior of material systems on 
the composition and related parameters. Quantum 
mechanics for isolated systems is an outstanding 
example of this evolution. The model, elaborated by 
physicists, was recast, several decades ago, into 
formulations more appropriate to the needs of chem- 
istry and gradually developed into a new branch of 
science, molecular quantum chemistry. 

The same appropriation of physical models by 
chemists is happening for the liquid state. Much of 
the recent evolution of models is not suggested on 
physical or mathematical grounds, but dictated by 
the need of studying chemical problems in solution. 
Computer simulations are an example of passage 
from a physical to a chemical leadership. Simula- 
tions started from very crude models (the molecules 
described as spheres). The consideration of more 
complex molecular shapes (dumbells, spherocylin- 
ders, etc.) and of more complex interactions (interac- 
tion site models, soft potentials, etc.) paved the way 
to formulations clearly addressed to chemical prob- 
lems. Nowadays, computer simulations are also able 
to  describe complex chemical events, such as the 
evolution of free energy during a chemical reaction. 
These methods exploit information derived from 
detailed quantum mechanical descriptions of micro- 
scopic events, at a super- and submolecular level. 
This evolution is apparent when comparing the 
references quoted above,15-17 with more recent re- 
views on this t o p i ~ . ~ O - ~ ~  A more intimate merging of 
quantum and classical force field models is one of the 
most significant recent progres~es .3~-~~ 

Also in the field of purely statistical approaches, 
such as RISMKRISM, we have more chemically 
oriented applications in the recent y e a r ~ . ~ l - ~ ~  An 
interesting proposal combining the RISM and quan- 
tum chemical approaches has been put forward by 
Ten-no et a1.47,48 Partial charges representing the 
charge distribution of a solute molecule are computed 
at the SCF ab initio level; these charges enter the 
RISM integral equations and contribute to determin- 
ing the solute-solvent pair correlation functions. In 
turn, the electrostatic potential computed from the 
solvent distribution is introduced in the solute Hamil- 
tonian for a new SCF calculation. The ab initio and 
RISM problems are repeatedly solved until mutual 
consistency. We have spent a few words about this 
particular method because of its close analogy with 
the quantum continuum methods described in section Iv. 

A shift or evolution toward chemical models is 
active also for the continuum methods, and it will 

inger, 1971) simulations. In both cases, the con- 
densed system is represented by an assembly of 
interacting particles: the statistical distribution of 
any property, or its evolution in time, is obtained as 
a sum over all particles, with appropriate rules. 
Standard references for the early stages of these 
approaches are provided by the two books edited by 
Berne,15 especially the reviews by Valleau and Whit- 
tington16 and Valleau and Torrie17 for MC, and by 
Kushick and Berne18 for MD. In this field, the 
computational effort of performing reliable simula- 
tions has compelled for many years the use of very 
simple expressions for the potentials, with the effect 
of again giving more emphasis to  physical problems 
and not exploiting the chemical potentialities of the 
approach. 

The continuum models, group c, have their origin 
in simple physical considerations. The attention has 
been focused since the very beginning on a micro- 
scopic description of one component of the system (i.e. 
the “solute” M). The expressions given by and 

for the classical interaction energy of a simple 
M with a medium represented as a continuous 
dielectric, were formally extended by KirkwoodZ1 in 
1934 to quantum descriptions of M, without limits 
in the complexity of the system. The decisive con- 
tribution of OnsagerzZ in 1936 was to provide an 
interpretative tool, used by chemists for many 
years: the simplicity of the formal expressions suc- 
cessively elaborated has stimulated application to 
various solvent effects (solvent shifts on vibrational 
and electronic spectra, molecular conformations, 
reactivity, etc.). The standard reference for the basic 
aspects of the dielectric continuum models are the 
two editions of Bottcher’s b 0 0 k . ~ ~ 9 ~ ~  A similar ap- 
proach has been developed for ionic solutions, start- 
ing from the original formulation of Debye and 
H i i ~ k e l . ~ ~  There is an extensive specialized literature 
on this subject; for many years the book by Harned 
and Owenz6 has been the standard reference. The 
continuum and physical functions approaches have 
been fruitfully combined also in the past decades. 

Lastly, there is the supermolecule approach. Mod- 
els considering the interaction of two or more mol- 
ecules have been used in the early stages of the 
theoretical investigation of condensed phases, before 
the advent of quantum mechanics. The interaction 
potentials themselves have been checked or cor- 
roborated on the basis of these same models. Under 
item d of our classification we collect, however, the 
approaches developed after the implementation of 
efficient quantum molecular computing codes. One 
of the aims is to get limited, but detailed, information 
about solvation effects on the properties of M and on 
the characteristics of the solvation sites: the ap- 
propriate strategy was first applied by Alagona et 
al.,27 and later systematically exploited by Pullman’s 
group.28 Another aim is the determination of the 
structure of inner and outer solvation shells, as done 
e.g. by Newton and E h r e n ~ o n . ~ ~  

This is a schematic description of the situation 
around 1975-1980. We may recognize that there 
were many methods to treat physical aspects of 
solutions, with several interconnections (the feedback 
between groups a and b has always been active), 
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be the subject of the following sections; we anticipate 
here some schematic remarks. The accurate descrip- 
tion of M, given by quantum molecular methods, may 
now be exploited to its full extent, also including 
molecules in chemical interaction; the description of 
the medium is no longer limited to isotropic homo- 
geneous dielectrics, nor to  electrostatic interactions; 
nonequilibrium, or dynamical, effects may now be 
accounted for. Combined strategies using continuum 
models, supermolecule calculations, computer simu- 
lations, and the elaboration of physical functions are 
in continuous progress. 

This evolution is not a mere deterministic trend of 
increasing complexity; it was purposefully guided by 
a limited number of scientists. In the case of 
computer simulations, a decisive contribution has 
been given by E. Clementi;49 his stimulus has been 
accompanied by innovative contributions by other 
workers, so that nowadays this is the main road to 
theoretical and computational chemistry in solution. 
In the middle of the 1970s, a similar role was played, 
for the continuum models, by a restricted number of 
persons, among whom we quote in particular Cla- 
~ e r i e , ~ O - ~ ~  R i ~ a i l , ~ ~ , ~ ~  and all of them have 
contributed to the further evolution of the model in 
recent years. A n  important step toward a full 
exploitation of the ab initio quantum molecular 
methods came as well from our l a b ~ r a t o r y . ~ ~ , ~ ~  The 
number of computational procedures within this 
family has rapidly increased in recent years. 

We now return to the problem of a renewed 
classification of the methods. However, this is a hard 
task, the outcome of which will soon be outdated 
because of the rapid evolution and admixture of the 
methods. It will be convenient to  limit ourselves here 
to  reconsidering the continuum models which are the 
subject of this review. We have recently advocated 
the introduction of the acronym EHCD (effective 
Hamiltonian methods which use a continuum distri- 
bution of the solvent). Under this heading we may 
collect (cl)  the new versions of the continuum model, 
based on a quantum description of the solute, and 
including the interaction with a medium via a 
continuum description of the latter (quantum me- 
chanical continuum methods); (c2) other versions of 
the continuum approach, which describe the solute 
as a classical polarizable charge distribution, and 
combine it with a continuum description of the 
surrounding medium (classical continuum methods); 
(c3) approaches based on modifications of the solute 
M, such as to represent the interaction with the 
medium, without an explicit representation of the 
latter (solvatons, virtual charge models). 

A unifying concept in all these methods is that of 
“reaction field”, i.e. the electric field generated by the 
polarized solvent; the interaction mediated by the 
reaction field is included in the Hamiltonian of the 
solute. 

This classification leaves out the methods relying 
on a discrete molecular description of the whole 
solution (we recall, however, that M in the continuum 
models may be a cluster including several solvent 
molecules). Some applications of discrete approaches 
(a combination of supermolecule and solvent simula- 
tions) may give pertinent information about typical 

parameters of the continuum models, e.g. the reaction 
field.59-62 Simplified descriptions of a portion of the 
solvent, based on the analysis of supermolecule 
studies, are often used with corrections arising from 
a continuum description of more distant regions of 
the solvent. An outstanding example is given by the 
use of Langevin dipoles to simulate water, adopted 
by Warshel in many  paper^.^^,^^ These approaches 
will not be reviewed here. They are, however, an 
indication that the evolution of the methodology will 
lead to a merging of different approaches and to the 
proposal of new ones, making obsolete any classifica- 
tion. 

Several preceding reviews have considered the 
three aspects of this reduced classification ( T a ~ i a , ~ ~  
Tomasi et al.66,67). The reviews specialized for the 
first section, cl ,  mainly report on the activity of a 
single research g r o ~ p . ~ ~ - ~ l  The second kind of ap- 
proach, c2, has many applications in the biological 
field: most reviews reflect this i n t e r e ~ t . ~ ~ , ~ ~  A 
balanced view and a detailed discussion have been 
presented by Davis and M ~ C a m m o n . ~ ~  A critical 
review of the third group of methods, c3, has been 
given by Con~tanc ie l .~~  We note that this latter 
paper brings out several errors hidden in preceding 
formulations. A systematic derivation of the classical 
electrostatic formulas used in continuous dielectric 
models has been done by Blaive in his doctoral 
thesis.79 Blaive has detected numerous inconsisten- 
cies and errors in previous work: his criticism has 
also been expressed in separate papers.80 

In the present review we shall address the meth- 
odological aspects of this evolution. Applications to  
specific chemical problems, the number and variety 
of which is rapidly increasing, will not be surveyed 
systematically. The literature we are covering reaches 
the first months of 1994. 

11. The Basic Continuum Model 

A. The Effective Hamiltonian 
Let us consider an infinite assembly of molecules 

which, at a given temperature and pressure, have the 
typical features of the liquid state. The system is in 
thermal and mechanical equilibrium, and chemical 
reactions may take place. This physical system is 
the starting point for the quantum mechanical for- 
mulation of a continuum model of solutions, assumed 
here as a reference point, with the view of introducing 
later more complex features, or of reducing it to  
simpler forms. 

The formal derivation of the model is based on the 
use of partitioning and averaging techniques of 
general application in molecular mechanics. The 
reader may find detailed formal presentations in 
papers by AngyanB1 and by Tapia:82 the latter com- 
pletes a series of preceding, less detailed, formula- 
t i o n ~ , ~ ~ ~ ~ ~ , ~ ~  more transparent to a nonspecialised 
reader. The final result of such formal manipulations 
is to justify thc definition of an effective fixed-nuclei 
Hamiltonian 92& for the solute M. 92& depends on 
the coordinates of Nel electrons q = ql, ..., we, and, 
parametrically, on the coordinates of N,,, nuclei, Q 
= Qi, ..., &Nnue: 
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Here @A’ is the usual electronic Hamiltonian in 
vacuo, according tp the Born-Oppenheimer 
approximation, and 9’ is an interaction potential 
which will be defined subsequently. The related 
Schrodinger equation is 

All relevant information about the solvent effects on 
the solute M is contained in the eigenvalues E@ and 
in the wave functions YW. For most purposes, the 
molecular charge distribution QM is conveniently used 
in place of YW. @M is the sum of a discrete nuclear 
charge distribution Qnuc and of the electron density 
function eel: 

(3) 

Here 2, is a nuclear charge and the index a runs over 
all the nuclei of M. The negative sign in eel accounts 
for-the electronic charge (-1 in atomic units). 

9int itself carries additional information which 
can be used in the study of chemical problems. Its 
definition implies the knowledge of a thermally 
averaged distribution function of the solvent mol- 
ecules, gs, so that we may write 

The origin and the extent of the average which 
defines gs can be stated more precisely during the 
elaboration of the model. The EHCD models are 
based on eqs 1-6. The word “continuous” in this 
acronym and in related definitions refers to  the fact 
that gs has the form of a continuous distribution. 

The basic continuum model invoJves a simplified 
form of the interaction potential; 9int is reduced to 
its classical electrostatic component, and gs describes 
a linear isotropic continuum, characterized by the 
static dielectric constant e of the bulk solvent, which 
depends, in turn, on the temp%rature T .  We shall 
use the symbol 2; in place of 9{nt, when only elec- 
trostatic polarization effects will be considered: 

Here @Jr) is the value of the electrostatic field 
generated by the polarized dielectric at the position 
r. The solute-solvent interaction contribution to the 
total energy Em is given by the integral 

8; is a monoelectronic operator, and the evaluation 
WMS is not, usually, a time-consuming step in the 
calculation. The quantum problem is treated with 

more or less standard techniques. The most fre- 
quent.y used is the Hartree-Fock method; in this 
case 2; is simply added to  the Fock operator. 

Let us summarize what we have done up to now. 
We have set up a formalism that allows the full 
exploitation of the potentialities of quanium chem- 
istry; in fact, the perturbed Hamiltonian EM has the 
same structure as $%$) and involves the same inte- 
grals. At the Sam? time we have given an implicit 
rule to  determine 9;. In fact, this operator depends 
on the total charge distribution @M (modified by 
solvent effects), on the assumed geometry of M (the 
Q coordinates) and on the value of the dielectric 
constant, E .  

B. Quantum and Classical Definitions of @M and 
@c7 

The quantum formulation of the basic electrostatic 
and continuum model requires the simultaneous 
definition of two problems, namely: (1) the quantum 
mechanical problem of computing the electron dis- 
tribution @M, with fmed nuclei, in the presence of Q,,; 
(2) the electrostatic problem of determining the 
solvent reaction potential QU and its interaction 
energy with the charge distribution @M. 

This is a typical nonlinear problem, because QU and 
3; depend in turn on @M. Its solution requires the 
elaboration of an appropriate strategy. The most 
intuitive approach will consist in performing a self- 
consistent iterative procedure, by solving alternately 
the quantum problem to determine @M and the 
classical electrostatic problem to determine a,,. Of 
course one needs a reasonable initial guess for Q0 or 
@M. There are however other approaches, which will 
be examined at  the appropriate time. 

The classical formulation faces an apparently 
simpler problem. There are no quantum equations, 
but the electrostatic problem is similar. The solute 
charge distribution @M is considered a classical entity 
(even if in the most refined versions of the method it 
derives from quantum calculations). A complete 
solution of the electrostatic problem would include 
polarization effects on @M, due to the solvent reaction 
field: in this case, an iterative procedure would be 
necessary. The classical methods presented so far 
adopt one of the following options: (1) The solute 
polarization effect is discarded and @M is not modified 
(rigid models, @M = e:’) or (2) the solute polariza- 
tion is included at the first order, giving a QE’ 
distribution function, without further feedback on Q,, 
(polarization models, @M = e:’). We shall reserve 
the name “extended Born models” to  the versions of 
the rigid models in which @M is reduced to a set of 
point charges. 

Both quantum and classical models have different 
options to  describe @,, and the electrostatic interac- 
tion energy between @M and (Du. The approaches of 
widest use are (1) multipole expansion, (2) apparent 
surface charge, (3) image charge, (4) finite differ- 
ences, and ( 5 )  finite elements. The first three ap- 
proaches have been implemented for quantum ver- 
sions of the model, all five approaches are used in 
classical models. 
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C. The Solute Cavity 
In all the five approaches mentioned above, one 

defines an empty cavity in the dielectric medium, in 
which the solute M resides. The introduction of a 
cavity is a nec%ssary step for methods based on the 
explicit use of EM and is also advisable for classical 
continuum methods. Methods belonging to group c3 
(polaron and virtual charge models) do not make 
explicit use of a cavity. 

The shape and size of the cavity are critical factors 
in the elaboration of a method. An ideal cavity 
should reproduce the shape of the solute M, with the 
inclusion of the whole charge distribution @M and 
with the exclusion of empty spaces which can be filled 
by the solvent continuous distribution. If the cavity 
is too large the solvation effects are damped; if it is 
too small serious errors may arise in the evaluation 
of the interaction energy for the portions of @M (atoms 
or bonds) near the boundaries. A cavity with a wrong 
shape introduces distortions in the description of the 
reaction field and of the related solvent effects. The 
cavity shapes actually employed are the following 
ones: (1) regular shapes, namely (a) spheres, (b) 
ellipsoids, and (c) cylinders; or (2) molecular shapes, 
namely (a) unions of overlapping spheres centered 
on the nuclei of M, (b) unions of overlapping spheres 
centered on some chemical groups of M, (c) unions of 
overlapping spheres, some of which are not centered 
on nuclei, located so as to  fill all the space not 
accessible to  the solvent, and (d) unions of overlap- 
ping spheres and cylinders, connected with portions 
of concave solids, to  fill the space not accessible to  
the solvent. 

The cavities of type 1 simplify the use of multipolar 
one-center expansions of a,, and @M. The use of 
image charge methods is also simplified when the 
cavity has a regular shape. The other representa- 
tions of CP,, are not critically dependent on a simple 
geometrical definition of the cavity. 

A cavity is also characterized by its size, i.e. volume 
and surface area. The problem of the most conve- 
nient definition of molecular volumes and surfaces 
in condensed phases has attracted the attention of 
many researchers and aroused discussions. Its re- 
lationship with the solution of the continuum elec- 
trostatic models is only one of the relevant aspects 
of the general question. A complete discussion about 
this topic is beyond the scope of this review. We limit 
ourselves to  quote two surveys on this s ~ b j e c t . ~ ~ , ~ ~  

As we shall see later, in passing from the basic 
model to other continuum models containing non- 
electrostatic terms (e.g. dispersion, repulsion, cavita- 
tion), it will be necessary to reconsider the problem 
of the cavity. In fact, these additional terms require 
cavities of different size, usually larger than those 
used for the electrostatics: typically, the excluded 
volume is related to the sum of the solute and solvent 
radii (see section V). 

In the original version of the polarizable continuum 
model (PCM), put forward by Miertiis, Scrocco, and 
T ~ m a s i , ~ ~  we defined the cavity in terms of spheres 
with radii R,, proportional to  the van der Waals radii: 
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The most popular set of reference atomic radii is 
probably that of Bondi, obtained from crystallo- 
graphic data:s7 see for instance the works of Cramer 
and Truhlar; Luque and Orozco; Miertiis; Olivares 
del Valle and Aguilar; Silla and Pascual-Ahuir; 
Sakurai; Tomasi; Wang and Ford, and their co- 
workers, cited in the following. The initially proposed 
factor, for the evaluation of the electrostatic term 
with neutral solutes, was f = 1.2. There was clear 
numerical evidence, in the different steps of the 
computational procedure, that the van der Waals 
radius should be a lower limit for the cavity radius: 
the factor f must be slightly larger than 1. The value 
off = 1.2 was obtained by considering the results of 
Kitaura and Morokuma’s energy decompositions8 for 
a few M*Sn clusters (M = HzO, CH30H, H2C0, NH3, 

Later we confirmed this choice by comparing the CP, 
values inside the cavity, obtained with PCM and with 
Monte Carlo calculations for different solvents (H20, 
CH30H, CH3NH2). These tests have not been pub- 
lished, because only a rough estimate of the f factor 
was needed for our purposes. 

Probably today, with better interaction potentials 
and more efficient computer simulation programs, 
the choice f = 1.2 could be refined or supported with 
more confidence. There are a few independent tests 
based on the study of radial distributions derived 
from molecular dynamics and on the analysis of the 
hydration free energy of neutral m o l e ~ u l e s , ~ ~ ~ ~ ~  indi- 
cating that the choice f = 1.20-1.25 is reasonable; 
in fact, atomic bond or lone pair charge centers of 
the solvent molecules are normally located a bit 
further from the solute atoms than a van der Waals 
radius.89 Only for hydrogens bonded to heteroatoms, 
have smaller radii been found c o n ~ e n i e n t : ~ ~  notice 
that this is a common practice also in force field 
methods. Another test has been performed in our 
group, with results only partially p ~ b l i s h e d ; ~ ~  using 
a more complete expression of the solvation free 
energy (including dispersion, repulsion, and cavita- 
tion contributions, each computed with cavities based 
on the van der Waals radii), we have varied the 
factors f1 and f2 so as to reproduce the solvent transfer 
free energies, or partition coefficients, between two 
solvents, SI and Sa. Given a number of neutral 
solutes M and solvents S (water, 1-octanol, chloro- 
form, benzene, toluene, cyclohexane), we have deter- 
mined the set of f i ,  f2 values which reproduce the 
experimental data relative to  each system M-Sl- 
S2. The most consistent choice, based on a statistical 
analysis, i s f=  1.2 for water a n d f =  1.1-1.2 for the 
other solvents. 

For charged solutes (ions, zwitterions, ion pairs) 
the factor f may need to be reconsidered, because of 
nonlinear effects in the polarization of the dielectric 
with high fields; we may have negative deviations 
from linearity, due to saturation, or positive devia- 
tions, due to charge migration in the field gradient 
(electro~triction).~~ These two physical effects sug- 
gest changes of the f factor in opposite  direction^.^^ 
A modification based on the analysis of some super- 
molecule calculations has been used by Bonaccorsi 
et al.93 for the solvation of the zwitterionic form of 
glycine. A recent comparisong4 with Monte Carlo 

CH3NH2, S = HzO, CH30H, NH3, CH3NH2, CH4, Ar). 
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simulations of acqueous solutions of charged mol- 
ecules (with f l  charges) suggests a value off = 1.10- 
1.15. An attempt of defining a unique factor ffor 
cations, and another one for anions, so as to repro- 
duce experimental solvation free energies, enthalpies, 
and entropies in a representative set of eight sol- 
vents, was not succe~sful ;~~ the use of a unique factor 
leads to  errors larger than the chemical accuracy. 
This is probably due to the strong dependence of the 
first solvation shell structure on the size and polarity 
of the solvent molecules, and on the charge and 
radius of the ion. Better results have been obtained 
with a layered cavity model that will be examined 
later. Similar conclusions were drawn from the 
recent determination of the best cavity for Br in 
various oxidation states and in different solvents.96 
In this work Rvdw is assumed to depend linearly on 
the atomic charge, and theffactor ranges from 1.20- 
1.25, when the solvent is water, methanol, ethanol, 
or chloroform, to  1.40 in dichloromethane and dichlo- 
roethane. Rashin and Namboodirig7 suggest the use 
of the ionic radius for anions and of the covalent 
radius for cations (water as solvent). 

General rules for the definition o f f  factors as 
functions of the atomic charges within the molecule 
M have been proposed by MiertuGg8 and, more 
systematically by Olivares del Valle et al.99-101 Mi- 
ertug et al.98 modify the Stokes rules to get ionic radii 
and elaborate a functional dependence O f  Rvdw on the 
Mulliken charge, based on the values O f  Rvdw at three 
different oxidation states. Olivares del Valle et 
al.99-101 define the radii (Rk) for neutral and ionic 
states of the atom k in terms of the square root of 
the expectation value of the second moment of the 
electronic density. The authors then determined an 
appropriate functional relationship connecting (Rk) 
to the atomic charges Qk. The numerical parameters 
to  be employed for a large number of basis sets are 
reported. 

Ill. The Classical Electrostatic Problem 

A. Boundary Conditions 
Once the shape and size of the cavity are defined, 

one may pass to  the solution of the electrostatic 
problem. 

The dielectric constant assumes one of two values: 

-E(r) = 1 r E Vi, (10) 

4r) = E r E Vout 

Vi, and Vout are the volumes inside and outside the 
cavity, respectively. Vout extends to  infinity. The 
charge distribution @M is supposed to be confined 
inside the cavity: 

= 0 r E Vout (11) 

With these assumptions we may derive the basic 
Poisson and Laplace equations defining the total 
electrostatic potential @: 

v2@(r) = o r E v,, 
For the asymptotic region, very far from M, we 

lim r@(r) = a (13) 

have the boundary conditions: 

lim r2V@(r) = p 

with finite values for a and p .  For points very close 
to  the cavity surface: 

@in = @out (14) 

l--- 

a@in - a@out 
---E- an an 

Here @in and QOut are the values of the electrostatic 
potential at  neighboring points just inside and out- 
side the cavity; a/an is the derivative in a direction 
perpendicular to the cavity surface; the n vector 
points outward. 

For a given charge distribution @M, the electrostatic 
potential @ differs from that calculated in vacuo, 
because it contains also the reaction field generated 
by the solvent charge distribution. Moreover, in the 
polarizable models, @M is modified by the reaction 
field itself; only in the rigid models is @M the same in 
solvent and in vacuo. 

In a classical model, the solute-solvent interaction 
integral, eq 8, is limited to the volume inside the 
cavity, because @M = 0 outside: 

We recall here that a quantity more pertinent to  the 
study of thermodynamic properties is the work 
necessary to bring the charge @M into the cavity 
(BOt t~he r ,~~  p 143). For a rigid model we have 

(16) 

This quantity has the status of a free energy, the 
electrostatic contribution to the solvation free energy 
change. The index i in AG$ denotes the level of 
approximation in the description of the mutual 
solute-solvent polarization effects (i = 0, rigid charge; 
i = 1, solute polarization in response to the reaction 
field; z = f, fully relaxed description). 

We shall examine now the five approaches to  the 
solution of the electrostatic problem, listed in section 
1I.B. 

B. The Multipole Expansion (MPE) Approach 
1. Spherical Cavities 

The simplest case is that of a charge distribution 
embedded in a spherical cavity with radius R. Ac- 
cording to the standard elaboration (see for instance 
BOttcherF3 p 194), the electrostatic potential @ may 
be written in terms of Legendre polynomials (spheri- 
cal harmonics). In principle one needs four sets of 
expansion coefficients: for negative and positive 
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powers of r ,  and for points inside and outside the 
cavity. Under the conditions introduced in section 
III.A, the general formulas can be simplified in the 
following way: 

inside the cavity 
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I +  (1 + 1)E 
L 
l=O 

outside the cavity 

Here y(O,#) is the spherical harmonic with total 
angular momentum I and projection m along the z 
axis. Bl, are constant coefficients and a is the cavity 
radius. Of the two terms contributing to @ inside 
the cavity, @M may be identified with the potential 
generated by @M, and a,, with the solvent reaction 
field. 

Readers acquainted with multipolar expansions of 
molecular charge distributions and interaction po- 
tentials are well aware of the disappointing proper- 
ties of one-center multipole expansions; the problems 
of convergency and asymptotic behavior within and 
outside the sphere containing all the charge distribu- 
tion have been analyzed many times (see for instance 
Claverielo2). However, the treatment of the interac- 
tion with a continuum within a classical model is 
simpler, under some respect, than that of intermo- 
lecular forces; one only needs to evaluate WMS through 
the integral 15. The problem of the asymptotic 
behavior in the Z summations, eqs 17 and 18, remains 
open, however. Romano,lo3 for example, examined 
the effect of including high terms in the 2l-pole 
expansion, for a solute M composed of an amino acid 
and a sizeable number of water molecules (250). He 
extended his study of the effect on WMS up to I = 100 
and concluded that 1 = 25 was the lowest acceptable 
limit. Things are surely better for molecules of 
smaller size, but it is clear that old methods, relying 
on the experimental values of a few Bl, coefficients, 
may give indications of trends and little more. In 
fact experimental dipole moments (I = 1) are avail- 
able for many molecules, quadrupole moments (I = 
2) are less abundant, and octopole moments (I = 3) 
are a rarity. Bl, coefficients may be derived from the 
wave functions, through the expectation value of the 
corresponding variable (dipole, quadrupole, etc.), or 
by resorting to a decomposition of @M into local 
contributions (such as atomic charges, atomic or bond 
dipoles), which are expanded over the set of Legendre 
polynomials with the origin in the center of the 
sphere. This is the approach used, for instance, in 
the quoted work by Romano, who represented each 
water molecule with a set of point charges. 

Multipolar expansions based on many centers, e.g. 
the chemical groups of M, with a set of Legendre 

polynomials for each expansion center, are of course 
feasible, but the expressions of @ are far more 
complex, and there are problems of overcompleteness 
in the Legendre basis set, which may produce com- 
putational troubles.51 

It is worthwhile to remark here that the expansions 
17 and 18, as well as other expansions, multicenter 
or using cavities of different shape, may be split into 
an electronic and a nuclear contribution. The latter 
is inherently related to a point charge distribution; 
we shall later exploit this remark. 

A second point deserving attention is the relation- 
ship between the expansion Coefficients of %I and 
a0 inside the cavity. It is clear from eq 17 that there 
is a simple relationship connecting each (Zm) term 
in the two sums. Passing now to the notation 
employed by Rivail and c o - w o r k e r ~ , ~ ~ , ~ ~ ~ , ~ ~ ~  who have 
largely exploited this feature, we may rewrite the 
interaction energy in the following form: 

1=0 m=-1 

where are the components of the charge distri- 
bution and RY are the components of the reaction 
field. The linear relationship between f l  and RY 
permits one to rewrite the latter in the form: 

The coefficients f ,  called reaction field factors, have 
analytical expressions not depending on the actual 
values of the expansion coefficients (MY or BY), but 
only on the shape of the cavity (sphere,54 spher- 
0id,lo6J07 e l l i p s ~ i d ~ ~ ~ J ~ ~ ) .  This simplification has been 
exploited to get fast geometry optimization of M (see 
section IV.E). 

The reaction field factors may be introduced also 
in multicenter expansions,lo8 yielding a more complex 
expression of WMS: 

- 1 - 1 ‘  

So far, we have considered general expressions for 
one-center multipolar expansions. The simplest terms 
are of widespread use. We report here the expression 
of the solvation energy for a few rigid models. 

(1) Born m0de1.l~ A point charge at the center of 
the sphere. Only the term with 1 = 0 survives: 

€ 4 2  AG$’(Born) = - - 26 R (22) 

(2) Bell model.20 A point dipole p at the center of 
the sphere. Only Z = 1 survives: 

(23) 

(3) Abraham model.log A quadrupole at the center 
of the sphere: 
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AGhy'(Abraham) = 

where 8 is a tensor related to the quadrupole mo- 
ment, defined as a sum over bond dipoles ,& located 
at positions r k :  8~ = C k r k p k j .  

Several other expressions using charges or dipoles 
out-of-center have been employed in the past. To 
these expressions based on fured charge distributions 
we may relate analogous expressions taking into 
account the polarization of the solvent at  the first 
order. The first and most widely used is that 
introduced by Onsager. 

A polarizable dipole, with 
polarizability a, at the center of the sphere: 

(1) Onsager 

(2) Thiebaut-Rivail model.ll0J1l A polarizable 
dipole at the center of the sphere. We do not report 
here the explicit expressions, given in the original 
papers. 

The last two examples are the simplest cases of 
classical polarizable models. A general expression 
for any charge distribution in a sphere has been given 
by Bonnor.'12 Bonnor made use of a power series 
expansion of the applied electric field, i.e. -VO,, and 
introduced the dipole, quadrupole, ..., n-pole (hyper)- 
polarizabilities. The latter molecular quantities can 
be obtained by standard perturbation theory, follow- 
ing several formulations which differ in the math- 
ematical detai1s.ll3-ll6 The mathematical expres- 
sions look quite formidable, and most applications 
rely on the use of induction terms for a set of dipole 
moments distributed in the m ~ l e c u l e . ~ ~ ~ - ~ ~ ~ .  

Recently Sharp et al.138 have proposed a different 
way of describing local dipole polarizabilities. The 
induced point dipole, located at a nuclear position, 
is simulated by adjusting the value of the local 
dielectric constant (LDC) in the portion of the cavity 
belonging to that atom. There is a complete electro- 
static equivalence in the two models (inducible dipoles 
and LDC representation): in fact, polarizability and 
dielectric constant are two ways of describing the 
same effect. The LDC model may be applied to a 
spherical cavity (using an average LDC over the 
whole molecule) or better to cavities of complex 
shape. There is, of course, some arbitrariness in the 
choice of the atomic partition of the cavity. 

A representative list of quotations of papers mak- 
ing use of spherical cavities in the different formula- 
tions would be almost meaningless, given the huge 
number of papers published in the past, but also in 
recent years. 

2. Ellipsoidal Cavities 
A sphere may be considered an appropriate cavity 

shape for a limited number of molecules. Spheroids 
and ellipsoids (oblate, prolate, or with three different 
axes) maintain analogous advantages of mathemati- 

Table 1. Multipole Contributions to AG:;) (kcaymol) 
for n-Propylamine in Water*@' (E = 78) 

spherical cavity ellipsoidal cavity 

AG:? AG!? 
1 = 1  

2 
3 
4 
5 
6 
7 

total 

-0.874 1 = 1  -1.159 
-1.075 2 -0.724 
-0.915 3 -0.107 
-0.592 
-0.378 
-0.188 
-0.129 
-4.152 total -1.990 

cal simplicity and are appropriate shapes for a larger 
number of molecules. 

The use of ellipsoidal cavities in continuum solvent 
models dates back to the early stages of the model. 
Westheimer and K i r k ~ o o d l ~ ~  reported the formal 
expression for the case of a molecule described as a 
set of point charges located on the main axis of a 
prolate cavity. They expanded O(r)  on a basis of 
Legendre functions, expressed in terms of confocal 
elliptic coordinates (several signs are wrong in the 
formulas in this original paper). Applications to  
cases with point charges in the foci were reported in 
the same paper. This model has been later extended 
by Ehrenson,140 Harrison et a1.,lo6 and then by 
Felder.lo7 

Central expansions limited to the dipole term have 
been considered by Scholte141 and by Abbott and 
B01tonl~~ (with critical remarks by B~ckinghaml~~) .  
The case of two dipoles located at  the foci of an 
ellipsoid has been treated by Wade.144 

We report here a representative list of applications, 
a few of which imply some modification of the 
mode1.145-155 

The most decisive and consistent effort to  imple- 
menting approaches based on the expansion of the 
reaction field in ellipsoidal cavities has been done by 
Rivail's group, with the view of applying it to quan- 
tum methods. The general expressions for the mul- 
tipole expansion of a general charge distribution in 
a three-axis ellipsoid, and for the related quantities 
Oo and AG;), have been given by Rivail and Ter- 
ryn,lo4 in terms of ellipsoidal harmonics. This set of 
expansion functions presents some advantages over 
the usual spherical harmonics. For the definition 
and properties of the ellipsoidal harmonics and of the 
related Lame polynomials see H ~ b s o n , l ~ ~  Perram and 
Stiles,157 Stiles,158 Rivail and Terryn,lo4 and Rinal- 
di.159 The last reference also describes a computer 
code available through QCPE (Quantum Chemistry 
Program Exchange, Indiana University, Blooming- 
ton, IN). We do not report the formal expressions 
for the electrostatic potential and for the interaction 
energy, which are similar to those already reported 
for a spherical cavity. 

More interesting is to compare the rate of conver- 
gence of AG;' for a given molecule, in spherical and 
ellipsoidal cavities with the same volume. The data 
shown in Table 1 refer to  n-propylamine in the 
extended conformation and are taken from Rivail and 
Terryn.lo4 The multipole moments have been com- 
puted with the GEOMOS program160 at  the CNDOIB 
level. The rate of convergence in the spherical cavity 
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is rather poor, while it is much better in the el- 
lipsoidal one; moreover, the AG:) obtained with a 
spherical cavity is much larger; both effects can be 
explained considering that the solute charge distri- 
bution approaches too closely some regions of the 
spherical surface, giving rise to  nonphysical effects. 
The computer programs of Rivail's group presently 
manage ellipsoidal harmonics up to I = 6, by expan- 
sion into spherical harmonics. 

Cavities of regular shape, spheres and ellipsoids, 
present the additional problem of locating the center 
of the cavity with respect to M and, in the case of 
the ellipsoids, the orientation of the three axes. For 
the sphere, an old choice was the center of mass of 
the molecule. In the models elaborated by Rivail's 
group, the center of gravity of the nuclear charges is 
chosen; notice that the two centers of gravity, of the 
nuclear and of the electronic charge distributions, are 
coincident if the dipole of M vanishes and are 
normally not far apart also for polar molecules. The 
volume of the cavity has been usually assumed equal 
to  the average molecular volume of M in the liquid 
state, following Onsager.22 Alternatively, it has been 
related to the molecular polarizability and refractive 
index of M, through the Clausius-Mossotti equation: 
54,161 

n2 + 2 vi, = - 
n2 - 1 a M  

The axes of the ellipsoids have been taken colinear 
with the axes of the dipole polarisability tensor, and 
their lengths proportional to the eigen~a1ues.l~~ In 
a more recent paper by the same group, the ellipsoid 
has been analogously defined with reference to the 
inertia tensor of the van der Waals solid, i.e. a solid 
of uniform density composed of interlocking van 
der Waals spheres.l@ Yet another option has been 
tested by Rivail's gr0up:163J64 the ellipsoidal surface 
is defined in terms of a best fitting of a given 
isopotential surface, i.e. a surface at  a selected 
constant value of the molecular electrostatic poten- 
tial, MEP.165J66 

The results obviously depend on these choices. All 
the above definitions may lead to surfaces which are 
too close to  one, or more, atoms of M. If the surface 
falls shorter than 90% of the van der Waals radius 
(corresponding to a factor f = 0.9 as defined in section 
11.0, the multipole expansions may exhibit conver- 
gence problems. Another approach to define el- 
lipsoidal cavities has been recently proposed by Ford 
and Wang.167 They employ a simplified (spherically 
averaged) water molecule as a probe and compute the 
interaction energy VMP between M and the probe, 
using molecular mechanics parameters. Vm is aver- 
aged over all possible locations of the probe on the 
ellipsoidal surface, and the ellipsoid paraEeters are 
determined by minimizing the average VMP. The 
dimensions of the cavity are then increased by a 
constant empirical amount A@ (the surface of the 
optimized ellipsoid in some cases lies too close to  
some of the nuclei of M). We report in Table 2 the 
AG$' results for guanine, with three values of A@, 
and the dissection into 2z-pole contributions. For this 
molecule, if one defines the cavity axes through the 

Table 2. Multipole Contributions to AGi;) (kcaymol) 
for Guanine in WateP 

1 A@ = 0 0.43 0.85 
1 -6.5 -4.3 -2.9 
2 -9.1 -4.8 -2.9 
3 -1.4 -0.5 0 
4 -3.3 -1.4 -1.0 
5 -1.9 -0.7 -0.2 
6 -1.7 -0.5 -0.2 
total -23.9 -12.2 -7.2 

a Optimized ellipsoidal cavity, with increment A@ of the 
linear dimensions. 

polarizability tensor, with a volume corresponding to 
A@ = 0, the expansion diverges. It is evident that 
the A@ value plays a decisive role. The convergence 
of the multipolar expansion is faster if the cavity is 
larger; however, too large a cavity underestimates 
AGel. 

3. Molecular Cavities 
Expansions in spherical harmonics may also be 

applied to cavities of irregular shape (our set 2 in 
section 1I.C). In fact, it is sufficient that the surface 
be piecewise differentiable, and the unions of spheres, 
ellipsoids, and other geometrical solids have this 
property. 

The mathematical problem is rather formidable, 
but has been solved by Huron and C l a ~ e r i e , ~ ~  in one 
of a set of papers which represent a cornerstone in 
the evolution of modern continuum methods. Huron 
and Claverie select a single set of harmonic functions 
r'y;"(O,$) for the expansion of Qo inside the cavity, 
and a multicentered basis set outside the cavity. The 
reasons for this choice are expressed in the original 
paper.51 We do not report here the detail of the 
mathematical manipulation of the model, for which 
several approximations are worked out. In the most 
general cases a numerical quadrature over Koborov 
grids is employed. 

C. The Image Charge (IC) Approximation 
The use of fictitious charges with appropriate 

positions and values, such as to  directly describe the 
reaction potential generated by a dielectric on a given 
charge distribution, is an old device in classical 
electrostatics. The name of image charge method 
comes from the simplest example, that of a point 
charge q placed in the vacuum at a distance d from 
the plane surface of a semi-infinite grounded conduc- 
tor. The single fictitious charge having the requested 
properties is a charge q' = -q, placed at  a distance 
-d (i.e., inside the conductor). The conductor surface 
acts as a mirror. 

Things are a bit more complicated when the semi- 
infinite conductor is replaced by a dielectric. We need 
in fact two image charges, the first, q', to  compute 
the potential Q outside the dielectric, and the second, 
q", to  compute CD inside (see eqs 17 and 18). One 
finds easily q' = - q ( E  - 1)/(~ + 11, located at d' = 
-d, and q" = 2q/ (~  + l), at d" = d. 

This approach is of wide use for electrolytes or 
other fluids bearing localized systems of charges near 
a hard wall, or confined between parallel walls. We 
shall not review here such applications. 
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D. The Apparent Surface Charge (ASC) Approach 
According to classical electrostatics, the reaction 

potential CPo may be described, everywhere in the 
space, in terms of an apparent charge distribution o 
spread on the cavity surface (ASC approach). 

This method appears to  be the most versatile and 
powerful for applications going beyond the classical 
model we are considering here. 

The general formulation is dictated by the bound- 
ary conditions introduced in section 1II.A. A o-charge 
distribution appears at each surface of discontinuity 
between different regions of the dielectric medium 
and can be expressed in terms of the difference of 
the respective polarization vectors P1 and Pz: 

o12 = -(P2 - PI> n12 (29) 

where 1112 is the normal from region 1 to  region 2 .  Pi 
is related to the gradient of the potential: 

The case of a charge distribution within a spherical 
cavity of an isotropic linear dielectric has been 
treated by Friedman.168 The treatment is restricted 
to a finite number of point charges and dipoles with 
arbitrary location inside the cavity. This type of 
charge distribution is sufficiently realistic for most 
practical applications. The expansion of CPu in terms 
of image charges is truncated to the first term (the 
presence of a spherical surface requires in fact an 
infinite set of image charges, each mirroring itself). 
The neglected terms are successively smaller by a 
factor ( E  + 1)-l. This notwithstanding, their effect 
is not negligeable. It is sufficient to  compare Fried- 
man’s expressions of AG$), for the cases of a charge 
or a dipole p at the center of the sphere, with the 
exact solutions of the Born or Bell models, eqs 22 and 
23. Within this formulation of the image charge 
approach we have 

(27) 
€ 4 2  charge q AG$) = - - € + 1 2 R  

(28) 
€42 
E+im3 

dipole y AG$) = - - 

These formulas differ from the exact ones by factors 
E / ( €  + 1)  and ( 2 ~  + 1 ) / ( 2 ~  + 21, respectively. 

An extension of this approach has been given by 
Shaw.169J70 Two main improvements are intro- 
duced: (i) the use of cavities defined in terms of 
piecewise regular surfaces (i.e., with local separation 
of coordinates), and (ii) the inclusion of the missing 
terms in the image expansion of CP,. To reach these 
goals Shaw makes use of the second Green identity 
(i.e., he reduces the potential to  the integration of a 
polarization surface charge density a, defined over 
the cavity surface). Then, by iteration, he derives a 
converged “multiple induction expansion” as a gen- 
eralization of the set of image charges. An alterna- 
tive t o  the multiple expansion is given by the use of 
direct numerical methods. Put in these terms, 
Shaw’s approach resembles that of the apparent 
surface charge we shall consider in the next section. 

A mixed method has been proposed by Rullman 
and van Duijnen.171 The “solute” charge distribution 
is described by a set of point charges q k  and Fried- 
man’s IC approximation is applied for the reaction 
field. The polarization free energy of the solvent, 
however, is computed by means of Onsager’s theory. 
As “solute” these authors consider the true solute 
molecule, supplemented by a generous amount of 
water molecules (two or three solvation layers). The 
method has not been extensively used, and other 
formulations coming from van Duijnen’s group will 
be summarized later. 

Coming back to the simplest versions of the image 
approach, these have been employed in a number of 
cases, their application being quite simple if the 
number of source charges is limited.172-174 Of par- 
ticular interest, as Friedman pointed out, is the use 
of this method in MC and MD computer simulations 
to  take into account the boundary conditions for the 
finite sample of molecules explicitly treated.31J75 

€ 2 4 ‘  

p . = - -  VCP 4Jt 

In our case we have only two regions, inside the 
cavity ( € 1  = 1; P1 = 0 )  and outside (€2 = E ;  P2 = P), 
therefore 

E - 1- E - 1- 
4?d€ 

0 = -pen = - ~ J t  VCP,,, n = - V @ , * n  (31) 

It is advisable to  compute a from the electric field 
inside the cavity, using the last member of the 
equation, because this formula gives a better ap- 
proximation at the zero order (no self-polarization of 
the dielectric). 

The potential CP is composed of two contributions, 
CP = CPM + CPu, as shown before. We have the implicit 
relation 

with 

(33) 

2 is the cavity surface and the s vector defines a point 
on 2. 

An advantage of the ASC formulation of the 
electrostatic problem is that of clearly expressing an 
additional condition, derivable from the Gauss theo- 
rem: 

E - 1  S, o(s) d2s = - - QM 
E 

(34) 

where QM is the total charge of M. The violation of 
this normalization condition generally occurs in 
quantum mechanical calculations and is mainly due 
to a portion of @M spreading out of the cavity57 (but 
any source of inaccuracy in the solution of the 
electrostatic problem can also affect the normaliza- 
tion of a). A u not correctly normalized may lead to 
significant numerical errors, and it is not easy to 
perform a renormalization when a multipole expan- 
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sion is employed. (This is the reason of several 
artifacts pointed out in preceding sections.) 

The solutions of the implicit equations involved in 
the o-based formulation of the electrostatic problem 
may be found by resorting to an expansion over an 
appropriate basis, e.g. spherical h a r m o n i ~ s ; ~ ~ , ~ ~ J ~ ~  
however, such a multipole expansion would suffer 
form the same problems of convergency and limita- 
tions on the shape of the cavity, which we have 
already discussed. 

The fact that the novel source of electrostatic 
potential, o, is confined to  a surface makes simpler 
the numerical solution of the problem. The C surface 
is divided into an appropriate number of tesserae, 
each with an area Ask and containing a charge q k  in 
the internal point s k :  

q k  = A s k  d s k )  (35) 

so that 
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(36) 

This approach may be called the boundary element 
method (BEM), this being the name reserved for 
analogous techniques in the fields of physics and 
e ~ ~ g i n e e r i n g . ' ~ ~ J ~ ~  The application of the BEM to the 
electrostatic problem of a molecular charge distribu- 
tion within a dielectric requires special care, in order 
to have a good representation of Qu everywhere and 
to reduce the computational costs. Important options 
in this respect are the geometrical partitioning of the 
I: surface and the exact location of the qk charges. 
Before discussing these topics, we outline the three 
available methods to solve the BEM problem, i.e. to 
determine the values of the qk charges: (a) iterative 
solution, (b) closure solution, and (c) matrix inversion. 

1. Iterative Solution 
We may start from a first guess of IS given by eq 

32 where we put Qu = 0. We call qio the surface 
charges corresponding to this approximation; the first 
0 index stands for a rigid charge model, i.e. k e d  @M 
(this index will change when discussing quantum 
mechanical models); the second 0 index indicates that 
we neglect @u,in in eq 32. We put 

(37) 

Here nk is a unit vector, normal to the I: surface in 
the point 86 and pointing outward. The correspond- 
ing potential @:, from eq 36, is inserted into eq 32 
to  get a better approximation, qi', and so on; at 
convergence, one obtains the final self-polarized 
charges &. In our formulation of the ASC ap- 
proach, the polarisable continuum method (PCM), 
we have implemented the iterative solution of the 
problem. In the first version of PCM,57!58 as well as 
in the most recent ones,178J79 three or four cycles are 
usually sufficient to  reach convergence. 

Equations 38-40 represent a compact formulation 
of the PCM iterative procedure for the self-polariza- 
tion of the o charge, including a correction for the 

Table 3. Convergence of the Iterative Process for the 
Calculation of the Apparent Charge, u 

1 -1.068 -5.757 -180.300 -48.695 
2 -1.176 -6.150 -180.631 -48.719 
3 -1.218 -6.269 -180.372 -48.725 
4 -1.234 -6.305 -180.375 -48.727 
5 -1.240 -6.317 -180.376 
6 -1.243 -6.320 
7 -1.244 -6.321 

AG,I (kcavmol) is tabulated for four different solute 
molecules M (ethylene, water, M$+-water octahedral com- 
plex, tribromide anion) in water, in the rigid e(o) approximation. 

finite size of the convex surface element h s k .  In the 
PCM, the Z surface is composed of interlocking 
spheres. The curvature radius Rk of the surface 
element h s k  is then the radius of the sphere to which 
it belongs. At the mth iteration, we have 

m - 1  

with 

The A k  factor takes into account the self-repulsion of 
the qk charge, by considering that it is uniformly 
spread on the h s k  surface element, rather than being 
a point charge. Miertug et al.57 have shown that the 
expression derived from Gauss' theorem: 

must be corrected for finite h s k  for two reasons: first, 
the curvature of the surface element; second, the local 
inhomogeneity of the potential inside h s k .  The local 
curvature introduces the correction term proportional 
to  vk1'2 in Ak; notice that the negative sign of this term 
in eq 39 implies that A& is convex. The expression 
O f  Ak was given by MiertuS et without a formal 
derivation, which can be found in successive papers 
by Hoshi et a1.180J81 and by Wang and Ford182 (in a 
shorter version). The second factor gives origin to  
corrections of the order of vk3132 (Tlk = ASklRk2 is the 
solid angle subtending h S k ) :  thus far, it has been 
neglected by all authors. The formal derivation of 
the correction for the inhomogeneity factor, and of 
higher order corrections, has not yet been published. 

The Bkl factor, eq 40, is related to the contribution 
to V@,k ,  due to the charge ql (computed with a finite 
difference expression). 

We report in Table 3 an example of the convergency 
of expression 38. 

2. Closure Solution 
The expression of a charge element at the mth cycle 

of the self-polarization procedure, qom, given in eq 38, 
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can be easily recast into a combination of series. The 
expression is particularly simple for qof, the final 
charge obtained at  convergency. We have recently 
exploited this feature in a new algorithm which 
avoids iterations.la3 At a first level of approximation 
we have: 

(42) 

This expression is sufficient for the rigid charge 
model. It may be further improved by adding a 
correction in BklBk'r, without appreciable increase in 
computer time. Equation 42 or its simpler improve- 
ments remarkably reduce the computational effort, 
with respect to  a converged iterative ca1c~lation.l~~ 

3. Matrix Inversion Procedures 
The expressions which determine the set of qk 

charges may be put in the form of a set of linear 
equations. It is convenient to  adopt a matrix form: 

D qof= E in (43) 

D is a square nonsymmetric and nonsingular matrix, 
of dimension equal to  the number of surface ele- 
ments: 

4n€ 
Dkl = x B k l  

(44) 

(45) 

qOf is a column vector, containing the unknown 
charges qYvf, ..., q:,f. Ei, is also a column vector, 
collecting the effective components of the solute 
electric field multiplied by the surface elements: 

Notice that the D matrix only depends on the 
definition and partition of the cavity and on the 
dielectric constant. Therefore, when the linear sys- 
tem 43 has to  be solved several times with different 
Ei,, as in the case of polarizable M, it may be 
convenient to  invert D and to store D-l. Then 

(47) 

There are several formulations of this method, dif- 
fering in some d e t a i l ~ . ~ ~ ~ - ~ ~ O  The paper by Hoshi et 
al.lgl may be considered the standard reference. 
Drummondla4Js5 developed an iterative method to 
avoid the inversion of D. Zauhar and c o - w ~ r k e r s ~ ~ ~ - ~ ~ ~  
have presented a set of models of increasing complex- 
ity and accuracy, based on the D matrix approach; 
some features of their method will be discussed later. 
Grant et al.lgO avoid the use of the curvature factor 
by dividing the tessera sk in a larger number of 
elements, to  compute Dkk. Also Rashin and Nam- 
boodiriS7 avoid the use of a curvature correction, and 
prefer to  define two sets of charges, the larger one to 
account for curvature effects. Rashin and Nam- 
boodiri consider the importance of the proper nor- 

Y 2.0 

ITER 

// 
0.0 

N u m b e r  of Tesserae 

Figure 1. Comparison of the CPU times required for the 
surface charge self-polarization, with the three proce- 
dures: iterative, matrix inversion (BEM), closure ap- 
proximation. 

malization of the (T charge, and they apply the same 
correction as in the original PCM.57 

We report in Figure 1 the computing times for a 
representative set of examples, obtained with the 
three procedures outlined above, using the same 
computer. Notice that an explicit matrix inversion 
is not necessary, when classical models are consid- 
ered; the solution of the linear equations in eq 43 may 
be obtained, by triangularization methods, with a 
computational effort about three times smaller than 
required for the complete matrix inversion. This is 
the procedure applied t o  get the results of Figure 1. 
The computing times increase with the number of 
tesserae M ,  according to different laws for the three 
methods: (a) iteration, time FZ NiJM2 (Nit number 
of cycles); (b) closure, time FZ Mz; and (c) inversion, 
time x W. 

The matrix inversion procedure should not be 
recommended for rigid classical models. Timings 
change when quantum mechanical models are con- 
sidered. 

The self-polarization iterations for (T must be nested 
in a self-consistent cycle for the polarization of M. 
The matrix inversion method, in contrast, offers the 
possibility of a direct solution. The matrix inversion 
requires more memory space than the other meth- 
ods: this was a decisive factor in favor of the iterative 
solution in the first version of the PCM,57 when core 
memory was relatively limited. Today there is more 
freedom of choice; however, as the number of tesserae 
increases with the size of the solute, a careful 
examination of the strategy to follow is needed. In 
applications of the latest ab initio version of the PCM 
programlgl to small molecules with fairly large basis 
sets, we found comparable computing times using the 
iterative and the matrix inversion procedures. When 
increasing the dimensions of the problem, the ap- 
proximate closure solution may be preferred. 

The matrix-inversion BEM procedure has been 
recently adopted by Klamt and S ~ h u U r m a n , ~ ~ ~  using 
a novel approach to the electrostatic solvation energy 
problem. They replace the dielectric outside the 
cavity with a conductor. Electrostatic formulas are 
simpler for a conductor. By introducing some ad- 
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ditional approximations, the set of apparent charges 
q is defined as 

q = -A-~BQ (48) 
and the energy is 

AE = -~/,Q+B+A-~BQ (49) 

Q is a column vector collecting the N charges 
representing the solute M; q is the analogous vector 
collecting the surface charges, A is a square t x t 
matrix with elements A,,, representing the interac- 
tion between each couple of qa - qy unit charges; B 
is a rectangular N x t matrix, where Bi, describes 
the interaction between two unit charges placed 
respectively at the position of the solute charge Qi 
and of the apparent charge 4,. 

To pass from the conductor to the dielectric, Klamt 
and Schiitirman introduce an empirical factor RE)  = 
2 ( ~  - 11426 + 1) which multiplies AE. The authors 
estimate that the error should not exceed 142~).  The 
definition of the surface elements derives from a 
complex procedure, not fully documented, starting 
from a very large number of elements, then reduced 
to a few hundreds. This approach, called COSMO 
(conductor-like screening model), has been quite 
recently implemented in the MOPAC package.Ig3 

4. The Tessellation (Triangulation) of the Surface 
Quite important, in assessing the performance of 

the various ASC methods and programs available, 
is the level of description of the X surface and of its 
tessellation. As we have already said, it is possible 
to  model the cavity surface in different ways. We 
shall consider here four different definitions of X, all 
derived from the union of van der Waals spheres 
centered on the solute atoms. 

The simplest definition, i.e. the mere union of 
spheres (&dW), is sufficient to  describe the continuum 
for molecules of small size; as already explained, the 
van der Waals radii should be multiplied by a factor 
f = 1.2. 

When the complexity of the molecules increases, 
there may be regions of the outer space where the 
solvent cannot enter, being composed of molecules 
with a finite size. The molecular surface ZMS defined 
by Richardslg4 is the closed envelope obtained by 
rolling a spherical probe of adequate diameter on the 
&W surface. For completeness, we recall here a 
third definition, that of solvent accessible surface 
(&A), defined by Lee and Richardslg5 as the surface 
corresponding to the position of the center of the 
above mentioned spherical probe. The use of the &A 
surface has been advocated many times in the past, 
and reconsidered r e ~ e n t l y , ~ ~ ~ J ~ ~  but the larger volume 
associated to &A leads to  an underestimation of the 
solvation effects. The EMS surface is everywhere 
differentiable, even in its concave or saddle-shaped 
portions. The analytical properties of such surfaces 
have been investigated by and later 
by Gibson and Scheraga,201,202 Kundrot et al. ,203 and 
Perrot et al.204 The presence of reentrant (concave) 
portions of the cavity surface depends on the confor- 
mation of the solute: quite often a reentrant region 
appears or disappears as a consequence of a small 
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conformational change. The triangulation of this 
kind of surfaces for the calculation of the G charge 
has been elaborated by Zauhar and MorganlE7 and 
it will be discussed later. The computational ap- 
proach is different for convex and concave regions and 
this fact introduces additional dificulties in the 
treatment, because of the sharp dependence on the 
conformation. 

These and other considerations have prompted us 
to develop an ASC treatment based on a fourth kind 
of surface, composed only of interlocking spheres.178 
Starting from &W, the algorithm adds more spheres, 
not centered on the nuclei, to  include in the cavity 
any region which cannot be occupied by the solvent. 
Later on, the same definition of 2 has been found 
useful to  compute the surface and volume of the 
cavity, with a better accuracy and at  a lower cost 
than achieved by means of Connolly's algorithm. The 
use of this method to define CMS, as well as &A and 
other surfaces and the associated volumes, is pursued 
by Silla and ~ o - w o r k e r s . ~ ~ ~ - ~ ~ ~  

An advantage of this definition of C for the ASC 
calculation is that the same tessellation can be 
applied in all cases. There are several ways to 
produce a tessellation, that is, to  define the surface 
elements Sk, the representative points sk, and the 
curvature correction (when applied). The partition 
of each sphere of the cavity into elements defined by 
parallels and meridians (spherical coordinates, with 
A0 and A@ increments) has been employed in the 
earlier versions of our PCM a l g ~ r i t h m ~ ~ , ~ ~  and is still 
in use.209-211 Since 1986 we have introduced in the 
PCM algorithm a new partition of the surface; in each 
sphere is inscribed a pentakisdodecahedron, i.e. a 
polyhedron derived from the dodecahedron by replac- 
ing each pentagonal face with five triangles. This 
solid has 60 faces, all of equal area. The pentakis- 
dodecahedron belongs to  a family of polyhedra with 
triangular faces, with geodesic formula212 {3,5]1,1. The 
surface of the sphere is correspondingly partitioned 
into 60 equivalent curvilinear triangles, almost equi- 
lateral. Higher order polytopes, { 3 , 5 } k , ~ ,  with 1 c k 
I 6, are used to describe the areas and centers of 
irregular tesserae deriving from the intersection of 
two spheres. Of course, hidden tesserae contained 
in the volume of the cavity, are not considered. The 
density of s points, i.e. of the surface charges q k ,  is 
about 1.5 lea. The GEPOL program for the con- 
struction of polyhedral surfaces is distributed by 
QCPE.213 

Wang and FordlS2 start from the pentakisdodeca- 
hedron, using the 32 vertices, in addition to the 60 
centers of the faces, to define a set of 92 polygonal 
elements, 80 of which are hexagonal and 12 pentago- 
nal. 

Zauhar and MorganlE7 define a set of points (nodes) 
on 2. The nodes are connected by segments (edges), 
which define a polyhedron with triangular faces 
(surface elements). Each element is specified by a 
triple of interconnected nodes. Making use of the 
normal to the surface at each node and of a ten-point 
Lagrangian interpolation polynomial, the authors 
also define curvilinear edges to take into account the 
curvature of the surface. The consistency of the 
triangulation is checked by computing the Euler 
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approaches based on a collection of polytopes, first 
introduced in Pascual-Ahuir’s doctoral 
still represent the best combination of accuracy, 
efficiency, and simplicity. 

E. The Finite Difference Method (FDM) 
The finite difference method (FDM) has been, and 

still is, widely employed in classical continuum 
studies: in the domain of the classical representation 
of large solutes, most applications employ the FDM 
or the ASC approaches. 

The formulation of the electrostatic problem in the 
FDM is a little different from that given in section 
1II.A. The starting point is a form of the Poisson 
equation in which the dielectric constant may depend 
on the position: 

V[E(r) % ~ ( r > l =  -4n@(r) (51) 
- 

characteristic of the mesh (to avoid the occurrence 
of “holes” or “intersecting triangles”). The density of 
oints Zauhar and Morgan found necessary is 2-4 
-2, for neutral solutes. 
Grant et al.lgO apply Connolly’s numerical dot 

a l g ~ r i t h m l ~ ~ - ~ ~ ~  with a density of oints % 10 
(high density covering) and % 2 (low density 
covering). Apparently, Rashin and Namboodirig7 
apply the same procedure, without giving much 
detail. Connolly’s algorithm generates dots on EMS 
by placing a sphere tangent to Z d W  at a finite number 
of locations. The latter are chosen along isolatitute 
circles for convex portions of EMS, Le. where the probe 
sphere is tangent to  a single atom sphere. Saddle- 
shaped portions of EMS are obtained when the probe 
is tangent to  two atom spheres and concave portions 
when it is tangent to  three spheres. The density of 
dots may be varied according to  the computational 
needs. As already said, the triangulation of the 
surface, starting from Connolly’s dots, raises prob- 
lems, at low as well as at high density, due to the 
appearance of “holes” and “intersecting triangles”. 
Juffer et al.214 suggest a more complex procedure. 
High density dots on EMS are first computed. A 
triangulation with the required density is performed 
on a sphere (72-100 elements). The vectors of nodes 
of the sphere (“spokes”) and of dots on EMS, referred 
to  a common origin, are compared by computing 
scalar products. For each node, only the closest dot 
is selected and employed in the triangulation of ZMS. 
The procedure fails if a spoke intersects EMS more 
than once. 

Another definition has been recently proposed by 
Rauhut et al.215 The surface dots are obtained 
making use of the marching-cube algorithm,216-218 
with a resolution of 0.216 bohr3 for the cube. The 
flat mesh thus obtained is then projected on a &dW 
surface (factor f = 1.15), with the introduction of a 
scaling factor for the area of the surface element 

1 

ASk = ASFbe (1 + aD2) (50) 

where D is the distance between the spherical surface 
element Ask and the flat one ASrbe, and a = 0.2 
bohr-2 is a parameter empirically selected. 

We stop here our examination of triangulation 
procedures: other methods seem less convincing. The 
overview here reported reflects the importance of the 
problem, especially for macromolecules, and the 
widespread conviction that the apparent surface 
approach is the most powerful and accurate method 
to describe electrostatic contributions to  the solvation 
energy. The experience based on numerical evidence 
indicates that methods apparently similar at  a 
cursory inspection, may yield quite different perfor- 
mances, as to computing times and accuracy. If the 
shape of the cavity or the location of the sk points 
are not appropriately chosen, one may obtain serious 
distorsions of the reaction field Q0; these effects are 
more evident at the ab initio level, because they 
influence the computed properties of the solute M. 
Problems of convergence in iterative procedures or 
series summation may also arise, as it is the case in 
classical models when the solute point charges lie 
close to  the surface. It is our firm belief that the 

While the PCM might be adapted to treat systems 
with smooth boundaries, such as molecules sur- 
rounded by a region of variable e ,  it is currently 
applied to models with sharp boundaries, as de- 
scribed in section 1II.A. On the other hand, the FDM 
has been applied to salt where depends 
on r through the concentration. Nonlinear effects, 
related to the ionic strength of the solution and not 
included in eq 51, have also been considered.221v222 

The first application of the FDM is due to War- 
wicker and Watson.223 The whole space, including 
solute as well as solvent, is mapped by a three- 
dimensional Cartesian grid. The differential equa- 
tion 51 is replaced by a set of finite difference 
equations for each point of the grid, with seven-point 
formulas (a positive and a negative increment for 
each Cartesian axis). The linear system to be solved 
has coefficients determined by the E and e values, and 
by the grid spacing. The solution is a set of 4 values 
at the grid points. Iterative algorithms are applied, 
starting with q5 = 0 everywhere. This version of the 
method presents several weak points which have 
been the target of successive refinements. The loca- 
tions of the point charges describing the solute M in 
general do not coincide with the grid points. Rules 
for distributing each charge to the eight surrounding 
grid points have been given by Edmonds et al.224 and 
by Gilson et al.225 Analogously, the discontinuity in 
the dielectric constant at  the cavity boundary has 
been smoothed out, alleviating the squared-off rep- 
resentation of the molecule.226 

The calculation of the solute-solvent interaction 
energy WMS and of the solvation free energy AGel, eqs 
15 and 16, is rather unprecise. A double calculation 
has been suggested by Gilson and H ~ n i g ; ~ ~ ~  the 
electrostatic energy is computed with and without 
solvent. The difference of the two results eliminates 
the self-energy of M and, in part, the finite difference 
spurious contribution to the Coulombic interaction. 
Another method, which reduces the cost of the second 
FDM calculation, has been proposed by Luty et a1.228 

The FDM calculations are rather computer inten- 
sive because of two reasons. The first is the slow 
convergence of the procedure. In the original War- 
wicker and Watson algorithm a Gauss-Seidel itera- 
tion scheme was adopted. Later, the simpler Jacobi 
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relaxation method was considered. In both cases, 
thousands of iterations are needed. More convenient 
are the successive over-relaxation (SOR) method, 
applied by Nicholls and H ~ n i g , ~ ~ ~  or the incomplete 
Cholewski conjugate method, proposed by Davis and 
M ~ C a m m o n . ~ ~ ~  These methods can be very conve- 
niently implemented for vector and parallel comput- 
ing. 

The second reason of inefficiency is the very large 
number of grid points. When the grid is too coarse, 
the results may be used only as a qualitative descrip- 
tion. Reducing the spacing of the grid to  reach the 
accuracy of other methods described in the preceding 
sections may be computationally prohibitive. The 
Delphi program, developed by Honig’s 
introduces the “focusing” of a progressively smaller 
volume, by reducing the grid spacing in successive 
steps, normally down to 0.25 A. Solvation energies 
obtained with a spacing of 1 A are unreliable, but 
the 0.5 or 0.25 A spacings seem to be sufficient. 
Harder to compute is the interaction between two or 
more solutes, for which the 0.25 spacing is just at 
the limit of acceptable accuracy. A comparison of 
Delphi results with those obtained by the SM1 model 
of Cramer and Truhlar (see section IV.B.2) has been 
recently reported by Alkorta et al.231 

We have not yet considered solvent polarization 
effects on the solute. The local dielectric constant 
(LDC) model, outlined in section III.B.l, was pro- 
posed in conjunction with an FD procedure for its 
solution; in fact, the replacement of point polarizable 
dipoles with regions having an appropriate dielectric 
constant makes easier the application of the FD 
formulas. The definition of atomic regions at con- 
stant, but different, values of E ,  is of course subject 
to  some arbitrariness, and further refinements are 
expected. 

Tomasi and Persico 

F. The Finite Elements Method (FEM) 
Like the FDM, the FEM is a numerical method of 

differential type (by contrast, we recall that BEM is 
based on an integral formulation of the problem). 

The FDM replaces the differential equations by 
algebraic ones, valid at a set of nodes within the 
domain, through the approximation of derivatives by 
finite differences, while the FEM replaces the domain 
by a set of finite domains (or elements), connected 
through their nodes, and reproducing at the nodes 
in an approximate way the behavior of the function 
in the subdomain. For example, in a triangular 
domain, the nodes are identified with the vertices, 
and the solution is expanded in terms of three 
functions, each having the appropriate value in a 
vertex and zero in the other two. 

The FEM may be applied to surfaces (two dimen- 
sions) as well as to  volumes (three dimensions). In 
our electrostatic problem 2-D FEM procedures will 
rely on an ASC formulation, while 3-D procedures 
will resort to  a description of the potential in the 
whole space. The procedures of Zauhar and co- 
w o r k e r ~ ~ ~ ~ - ~ ~ ~  we have quoted in section III.D.3 
actually constitute an application of 2-D FEM. The 
last version of the computational codelag seems to be 
quite effective. 

More difficult is the 3-D implementation of the 
FEM. An interesting strategy has been elaborated 
by O r t t ~ n g , ~ ~ ~ ? ~ ~ ~  who has lately applied the method 
to other problems. 

One of the advantages of the FEM with respect to  
the FDM is the easier construction of variable-size 
meshes and the easier handling of boundary condi- 
tions. The FEM appears to  be the method of choice 
to treat electrostatic problems characterized by strong 
local anisotropies, a problem we shall consider in 
section VIII. 

G. The Description of the Solute Charge 
Distribution in Classical Models 

The solute charge distribution @M and the cor- 
responding potential QM are in general reduced to  a 
simple form. Definitions of @M drawn from experi- 
mental data are now of very limited use (usually 
dipole moments in crude models). The approaches 
of wider use start from quantum mechanical calcula- 
tions performed on the isolated molecule M or on 
interacting M-S pairs. The @M function drawn from 
a QM calculation may be subjected to multipole 
decompositions, with one or many centers of expan- 
sion. Of wider use are the multicenter expansions. 
These may be reduced to the monopole term only 
(point charge expansions) or extended to higher 
angular momentum contributions. The most popular 
expansions are based on atomic charges (sometimes 
supplemented by atomic dipoles), but many other 
expansions are in use. 

Claverie performed, before his untimely death, a 
lucid analysis of the methods for describing @M in 
terms of local expansions.234 A more exhaustive 
review of this subject has been recently 
In that review the appropriate attention is paid to  
the so-called potential derived (PD) atomic charges. 
These charges are obtained by a numerical fitting of 
the molecular electrostatic potential @M (MEP) at  
some distance or range of distances from the nu- 
clei. 165,166 Many recent computational packages, such 
as AMBER236 and GAUSSIAN92,299 perform the 
evaluation of PD charges; the fitting procedures 
consider @M values in the region appropriate for the 
ASC calculation of solvent effects. The PD atomic 
charges were proposed in 1978 by M ~ m a n y , ~ ~ ~  but it 
is fair to  remark that the same fitting procedure, with 
charges not limited to the atoms, was of current use 
long before in our laboratory, where the first set of 
PD charges was obtained by Alagona in 1970.238-240 

PD charges are now of widespread use in solvation 
energy calculations. We report here a limited num- 
ber of quotations having some methodological rel- 
evance. To get accurate a@&n values on the cavity 
surface requires a finetuning of the MEP fitting; the 
apparent charge o and the corresponding potential 
@, are quite sensitive to  the numerical procedure 
adopted, and the best results are often obtained with 
some scaling of the computed PD ~ h a r g e s . ~ ~ l - ~ ~ ~  

Analogous problems arise when other expansions 
of @M are applied to evaluate solvation energies. This 
aspect has been considered by Claverie in one of his 
last 

Local expansions of QM in charges or multipoles are 
of real chemical interest if the transferability is 

based on the ASC approach. 
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Table 4. Classical Electrostatic Methods 
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~ .~~ ~ . - ~  

Kirkwood21 1934 
Onsagerz2 1936 
Bonnor1l2 1951 
Abraham" 1967 
Friedman1@ 1975 
van Duijnen171 1987 
Abrahams02~so5 1978 
Scholte141 1949 
B ~ c k i n g h a m l ~ ~  1953 
ThiebautllO 1972 
Beveridgelo6 1976 
Ri~ail-RinaldilO~J~~ 1982 
W e ~ t h e i m e r ' ~ ~  1938 
Ehrenson140 1976 
G6mez-JeriaSo7 1990 
C l a ~ e r i e ~ ~ , ~ ~  1974 
O r t t ~ n g ~ ~ ~ ~ ~ ~ ~  1977 
T o m a ~ i ~ ~  1982 
ZauharlsG 1982 
Wanvickerzz3 1982 
EdmondsZz4 1984 
Rashing7 1987 
Honigz25~2z7 1988 
C l a ~ e r i e ~ ~ ~  1988 
Abrahamzo9 1988 
DrummondlS4 1988 
Stillzz0 1990 
Kanesakas1a~811 1982 
Tomasi417 1986 
JayaramSo9 1990 

authoP cavity shape electrostatic approach polarizable solute descriptionb of @M 

B o d 9  1920 sphere MPE no I,, = 0 
Bellz0 1931 sphere MPE no I,= 1 

l,, unlimited sphere MPE no 
sphere MPE Yes l,, = 1 
sphere MPE yes 1, unlimited 
sphere 
sphere 
sphere 
spherec 
spheroid 
spheroid 
spheroid 
spheroidd 
ellipsoid 
ellipsoid 
ellipsoid 
ellipsoidd 
molecular 
molecular 
molecular 
molecular 
molecular 
molecular 
molecular 
molecular 
molecular 
molecular 
molecular 
molecular 
moleculald 
cylindeld 
cylindeld 

MPE 
IC 
IC + MPE 
MPE 
MPE 
MPE 
MPE 
MPE 
MPE 
MPE 
MPE 
MPE 
MPE 
FEM 
ASC 
ASC 
FDM 
FDM 
ASC 
FDM 
ASC 
ASC 
ASC 
Gen.Born 
FEM 
ASC 
MPE 

no 
no 
no 
no 
no 
Yes 
Yes 
no 
no 
no 
no 
no 
no 
Yes 
Yes 
no 
no 
no 
no 
no 
no 
no 
Yes 
no 
no 
no 
no 

1,=2 
point chargeldipole 
point charge, I,, = 1 
l,, = 0 
1" = 1 
I,, = 1 
I,, = 3 
I,, unlimited 
I,, unlimited 
point charges 
point charges 
general 
point charges 
general 
general 
point charges 
point charges 
point charges 
point charges 
point charges 
pt chargddipolelquadrupole 
point charges 
point charges 
point charges 
I,, = 1 
point charges 
point charges 

Reference name, not necessarily the first author. l,, is the maximum multipole order allowed in a one-center expansion of 
@M. Many layers with different dielectric constants E .  Two layers with different dielectric constants E .  

insured. This problem has been considered many 
times in the past, but it must be taken up again in 
the framework of the solvation procedures, because 
of the coupling effects of the solvent reaction field on 
the separate contributions to  @M. The papers quoted 
above241-245 consider this problem, but much work 
remains to  be done. 

Quantum mechanical solvent calculations allow the 
classical formulations to  be checked by resorting to 
a controlled sequence of approximations, ending up 
with a very limited number of point charges. This 
perspective will be examined in section W.C. 

Atomic charges are also employed in the formula- 
tion of molecule-molecule pair potentials to be used 
in computer simulations.247 Hybrid continuum and 
cluster models of solvation are expected to play an 
important role in future developments: the congru- 
ence of charges used in continuum methods and in 
cluster simulations is an aim worthy of further 
studies. 

H. A Summary of Classical Methods 
Several among the procedures examined in the 

preceding sections have been conceived as parts of 
quantum mechanical methods, and their application 
to classical models has been considered as a marginal 
extensions; other procedures have been developed as 
classical methods only. We collect in Table 4 a 
selection (very far from complete) of methodological 
proposals which have been employed in the classical 
approximation. 

We recall here shortly the gist of a classical model 
and its most important parameters. 

Point 1. The solute charge distribution @M is 
determined a priori, with the methods examined in 
section 1II.G. An alternative approach58 employs the 
full description of @M as a linear combination of 
atomic orbital products (LCAO) or the analogous 
description of fragments, assuming transferability 
from molecule to  m o l e ~ u l e . ~ ~ ~ ~ ~ ~ ~  

Point 2. The solute charge distribution is fre- 
quently considered as unaffected by the solvent 
potential, or, in other cases, is subject to polarization. 
The polarization may be expressed in terms of central 
or local expansions (the dipole term only is generally 
retained), it may be described by introducing effective 
space-dependent dielectric constants,138 or it may be 
represented by empirical expressions acting on the 
LCAO descriptions of local groups.248s250 

Point 3. The solvent reaction field is described with 
one of the methods described in sections 1II.B-F: 
MPE, ASC, IC, FD, FE. 

Point 4. The geometry of the solute is kept fxed. 
In some cases, e.g. in conformational studies, geom- 
etry changes may be included, by resorting to  mo- 
lecular mechanics. 

These features are summarized in the above- 
mentioned Table 4. 

lV. The Quantum Problem 

A. General Aspects 
In the preceding sections, we have considered in 

detail the classical formulations of the problem. The 
other face of the basic continuum model is the 
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quantum mechanical treatment of the solute M, 
embedded in the solvent reaction field. As already 
remarked, the formal problem is very simple; we add 
?‘A, eq 7, to  the solute Hamiltonian &$), and we have 
to solve the Schrodinger equation: 

(52) 
We have added an index (f, to indicate that the 
solution of this nonlinear problem is often determined 
iteratively, and we are interested in the final cop- 
verged solution. We have also indicated that y: 
depends on the solution of the equation, VI, through 
QM. To avoid misunderstandings, we stress that the 
complete Hamiltonian in the fured nuclei approxima- 
tion must be employed (usually neglecting relativistic 
or magnetic terms). 

The energy E(&) may be partitioned into several 
components. In vacuo, as well as in the solvent, we 
have the kinetic energy of the electrons, Tel, and the 
potential energy terms concerning nuclei and elec- 
trons of M, Vnuc,nuc, Vel,nuc, Vel,el; these terms give 
different contributions, in solvent and in vacuo, only 
because of the change in the wave function induced 
by the reaction field. Additional energy terms rep- 
resent the solute-solvent interaction, WMS. 

Because of the linearity of the electrostatic equa- 
tions, eq 12, the CPo potential may be conveniently 
divided into two contributions, deriving from the 
nuclear and from the electronic charge distributions; 
we shall call them CPo,nuc and CPo,el, respectively. We 
have 

(53) 

Analogously, in the ASC approach, the 0 charge can 
be partitioned as 

(54) 

The interaction energy WMS thus contains four terms: 

0 = 0nuc + Gel 

wMS = 

where 

and so on. 
The final energy is thus decomposed as follows: 

‘e1 + Vnuc,nuc + Ve1,nuc + Vel,el+ Wnuc,nuc + Wnuc,el + 

Here we have dropped, for simplicity, the superscript 
(f, on the right hand side. In most papers this 

decomposition is not mentioned: only the total 
potential CP, is considered, and the atteniion is 
focused on the electronic part of @M and 7’; (the 
nuclear part is treated in a completely classical way). 
We shall adopt here a similar abbreviation. 

The most widely applied method to solve the 
electronic problem is the Hartree-Fock (HF). After 
expanding the one-electron functions (molecular or- 
bitals) in a basis {...~p)...~u)...}, the HF equations are 

FC = ESC (58) 

The matrix elements of the Fock matrix F are 
modified, with respect to  those appropriate in vacuo, 
primarily by the addition of the 4: contribution to 
the monoelectronic term h, and secondarily because 
of the dependence of the bielectronic term G on the 
electronic density eel: 

F,. = h,, + G,,(gel) + CUI $!,((eel)14 (59) 

The explicit expression of the 0.1 ?;lv) elements de- 
pends on the method adopted to describe the reaction 
field potential, CPu. Three methods have been ap- 
plied: (1) the multipole expansion (MPE); (2) the 
image charge (IC) approximation; and (3) the appar- 
ent surface charge (ASC) approach. 

In the first case @,, is expressed as a sum of 
spherical harmonics; in the IC approximation, CPo is 
the potential of a set of point charges and point 
dipoles spread in the space around the cavity; in the 
ASC approach, the source of CPo are the point charges 
located on the cavity surface. All the elementary 
integrals needed for the three approaches have long 
been available in quantum chemical packages, with 
the exception of those involving spherical harmonics 
with high I, seldom used in molecular calculations 
in vacuo; programs are now available through the 

An iterative solution of the HF equations 58 is 
adopted in the MPE and IC methods; approximate 
expressions of YA in terms of multipole expansions 
or image charges are refined during the cycle of SCF 
calculations, taking into account the solvent polariza- 
tion effect on eel and CP, at the same time. The 
number of cycles is variable, depending on the 
parameters of the electronic problem, on the dielectric 
constant, and in particular on the shape of the cavity 
(limitations in the cavity shape are present in most 
of the methods belonging to the MPE and IC catego- 
ries). 

In the ASC approach, two strategies can be applied, 
as anticipated in section 1I.A. The first one consists 
of a two-step iterative procedure: (A) solution of the 
HF equations with a fixed @., and (B) determination 
of a new 0 charge distribution and a new a,, by 
means of one of the algorithms described in section 
1II.D. Steps A and B are repeated until convergence. 

The alternative is a variational calculation of the 
free energy G2; this can be done by a modified SCF 
procedure, simultaneously optimizing the wave func- 
tion and the reaction field, without external itera- 
tions. To examine the implications of this second 
option, we discuss first the thermodynamical status 
of the quantitites we are computing. The energy E@, 
eqs 52 and 57, corresponds to the work spent in 

QCpE.105&51 
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assembling nuclei and electrons of the solute M, i.e., 
in building up the charge distribution e$ = e2 + 
enuc, in the already polarized dielectric. The energy 
which may be recovered in a hypothetical thermo- 
dynamic cycle, i.e. the electrostatic free energy Gel, 
is58 

This can be demonstrated by the charging param- 
eter method applied in electrostatics and statistical 
 thermodynamic^.^^^^^^^^^^ Shortly, one defines an 
attenuated solute-solvent interaction potential, as 
the full potential U(P) multiplied by a parameter A, 
which ranges from 0 to 1 (Q is here the collection of 
solvent coordinates). A distribution gs(Q$) of solvent 
particles corresponds to the attenuated potential 
AU(C2). The total interaction energy WMS, computed 
with a given @M and with the full interaction poten- 
tial, depends linearly on gs(s1;A): 

WM,&) = Sv(a)gs(Q$) dQ (61) 

This expression is equivalent to eq 55,  if electro- 
static interactions only are considered. The free 
energy change due to the building up of the solvent 
polarization, in the presence of the solute, is then 

AG = hlWMs(A) (62) 

If the solvent is a linear dielectric, i.e. if gS(S2;il) is 
proportional to  the parameter A, the factor VZ of eq 
60 is obtained. 

I t  is interesting to observe that the same result is 
found in a straightforward perturbation theory treat- 
ment of two interacting quantum systems, M and s. 
Let us write the total Hamiltonian as 

(63) 

The zeroth-order Hamiltonian is %$I + %:’. The 
basis for the perturbation treatment is given by 
products of M and S states. For the subsystem M 
we consider only one state IY) either in the rigid 
approximation (eigenstate of 9?$) or fully adapted to 
the environment (IYW)). In both cases we shall call 
EM the associated energy term: 

(Y!l@~)l~) = E M  (64) 

Let us now concentrate on the perturbation treat- 
ment of the interaction energy and of the internal 
energy of S. We indicate with IK> the states of S and 
with lY,K) the states of M + S. The zeroth-order 
energies of S are called EK: 

@:’I@ = EKI@ (65) 

The second-order approximation for the total en- 
ergy of the ground state, IY,O), is 

We shall suppose that in the unpolarized ground 
state of the solvent there is no interaction, so that 
the first-order term vanishes. The perturbed wave 
function is 

with the normalization factor 

We now decompose the second-order corrected en- 
ergy, eq 66, according to the Hamiltonian terms 
involved. EM is the contribution of %$I. For %:’, 
we have a positive second-order contribution, repre- 
senting the increase in energy of the perturbed 
system S: 

For the interaction kMS we have a single negative 
term, double in magnitude: 

In conclusion, both the electrostatichtatistical treat- 
ment and the quantum mechanical one lead to a 
simple interpretation: the I/Z factor in eq 60 is due 
to the solvent polarization work, which is not con- 
tained in Em, and is opposite in sign and half in 
magnitude with respect to  the interaction energy. 
The factor is exactly VZ only in the linear response 
approximation, i.e. with linear dielectrics in the 
electrostatic language, or with a perturbation of the 
wavefunction truncated to first order in the quantum 
mechanical language. 

The Schrodinger equation 52 we want to  solve is 
of a nonlinear type, because 2; depends on Y. The 
variational principle can be applied to  seek ap- 
proximate solutions, but not in the standard form; 
in particular, the functional to  be minimized does not 
correspond, for an exact eigenfunction Ym, to the 
eigenvalue E@. We avoid here the mathematical 
details253~254 and we limit ourselves to recall that, in 
the case of a linear dielectric, the functional present- 
ing an absolute minimum for Y = Ym is 

This is just the electrostatic free energy Gel, eq 60. 
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Table 5. Ab Initio Continuum Methods 

Tomasi and Persico 

name authol" cavity shape electrostatic approach Q M level descriptionb of @M 

- 
DRF 
PCM 
SCRF 
PCM 
PCM 
SCRF 
SCRF 

SCRF 
SCRF 
PCM 
PCM 

Chr i s to f f e r~en~~~  1976 
van D ~ i j n e n ~ ~ ~  1980 
Tomasi5' 1981 
Rivaillo5 1983 
T o m a ~ i ~ ~ O  1983 
T o m a ~ i ~ ~ ~  1984 
Mikkelsen305 1987 
Mikkelsen30s 1988 
K a r l ~ t r o m ~ ~ ~  1988 
K a r l ~ t r o m ~ ~ ~  1989 
R i v a i P  1990 
WibergZg5 1991 
Olivares del Valle427 1993 
Agui1a1-l~~ 1993 

sphere 
molecular 
molecular 
ellipsoid 
molecular 
molecular 
sphere 
sphere 
sphere 
sphere 
ellipsoid 
sphere 
molecular 
molecular 

MPE 
ASC 
ASC 
MPE 
ASC 
ASC 
MPE 
MPE 
IC 
IC 
MPE 
MPE 
ASC 
ASC 

SCF 
SCF 
SCF 
SCF 

3 x 3 C I  
SCF 
MCSCF 
SCF 
MCSCF 

SCF-EHP 

SCF-MBPT 
SCF-MP2-CI 
SCF-MBPT 
MCSCF-CI 

I,, = 3 
point charges 
general 
I,, unlimited 
general 
general 
l,, = 6 
l,, = 6 
point ch./dip. 
point ch./dip. 
l,, unlimited 
1" = 1 
general 
general 

a Reference name, not necessarily the first author. I,, is the maximum multipole order allowed in a one-center expansion of 
@M. 

Table 6. Semiempirical Continuum Methods 
name 

SRCF 
SRCF 

PCM 
SCRF 
SCRF 
AMSOL 

PCM 
PCM 
PCM 
COSMO 

authol" 
1973-76 

T a ~ i a ~ ~  1975 
SakurailS0 1987 
M i e r t ~ S ~ ~ ~  1988 
RinaldP3' 1983 
Zerner and KarelsonZso 1986 
Cramer and T r ~ h l a l - 3 ~ ~ 1 ~ ~ ~  1991 
Wang and FordlS2 1992 
Luque and O r o z ~ o ~ ~ ~  1992 
BasilevskyZ1O 1992 
Rauhut and Clark2I5 1993 
Klamt and S~hUUrmannl~~ 1993 

cavity shape 
sphere 
sphere 
molecular 
molecular 
ellipsoid 
sphere 
molecular 
molecular 
molecular 
molecular 
molecular 
molecular 

electrostatic approach 
MPE 
MPE 
ASC 
ASC 
MPE 
MPE 
Gen Born 
ASC 
ASC 
ASC 
ASC 
ASC 

descriptionb of QM 

Lnax = 7 
l,,= 1 
general 
general 
l,,= 6 
I,, = 1 
point charges 
point charges 
general 
general 
general 
point charges 

a Reference name, not necessarily the first author. I , ,  is the maximum multipole order allowed in a one-center expansion of 
@M. 

The relationship between the Schrodinger equation 
52 and the free energy functional has been first 
established by Y o m o ~ a . ~ ~ ~  A detailed formal elabora- 
tion of an SCF procedure which minimizes Gel has 
been given by Hoshi et al.lsO 

In summary, if the dependence of ?; on Y is 
explicitly taken into account, the variational solution 
of eq 52 yields Yfl and Gel. In the iterative solutions, 
whether elaborated in the ASC, in the MPE, or in 
the IC frameworks, the YA operator is held fixed at 
every step, and the standard formulation of the 
variational principle applies; at convergence, one 
obtains the same Ym, but a different energetic 
quantity, Em. The free energy Gel is then computed 
as a difference, eq 60. This procedure has been 
applied by Miertus and Toma@ and by many other 
authors. We emphasize the fact that the two ap- 
proaches, formally equivalent, also give the same 
numerical r e ~ u 1 t s . l ~ ~  

One could ask why the Gel minimization method 
has seen relatively few applications at the quantum 
level and none, until today,lgl at the ab initio level. 
One reason is that it demands large memory re- 
sources to  be competitive with the iterative methods; 
the latter, in turn, may run on small computers, also 
for medium-size molecules. Today, because of hard- 
ware improvements, the balance is shifting. More- 
over, the formidable apparatus of matrices to  be 
stored in core memory (see Hoshi et al.lSoJ8l) has now 
been reduced,lgl and the direct minimisation methods 
will surely find a wider application in the field of the 
ab initio quantum chemistry. 

B. A Survey of Quantum Methods 

We report in Table 5 a selection of quantum 
mechanical ab initio continuum solvation methods 
and in Table 6 an analogous selection for semiem- 
pirical methods. The determination of the electronic 
wave functions is not always limited to the HF 
approximation. In the following pages we comment 
upon these methods. 

We recall that we are still examining the primitive 
model, i.e. a model addressed to evaluate the elec- 
trostatic component of the solute-solvent interaction 
energy, for an isotropic continuum medium. Some 
simple extensions of this model enter Tables 5 and 
6; more complex models will be considered later. We 
remark also that some approaches have requested 
in their elaboration the proper consideration of 
nonelectrostatic contributions to  AGsol; these aspects 
will also be treated later. 

Here we report some additional information and 
comments on the methods considered in Tables 5 and 
6, without separation between ab initio and semiem- 
pirical methods, and tempering a chronological ex- 
position with the indication of the successive devel- 
opments of the approach. 

The first models describing a quantum mechanical 
system placed within a cavity of a dielectric medium 
were elaborated to study solvated  electron^.^^^-^^ The 
features of these systems prompted the introduction 
of specific simplifications not applicable to  other 
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systems. The Schrodinger equation, for instance, 
reduces to  the single electron one; the solution is 
found by means of ad hoc procedures, such as 
numerical quadrature in one dimension (the radial 
coordinate). However, these studies were important 
for the development of continuum solvation methods, 
because they brought out several methodological 
problems, such as those connected to relating mac- 
roscopic electrostatic properties with microscopic 
quantum descriptions; satisfactory solutions have 
been found in the prosecution of the studies. 

1. One-Center Multipole Expansion Methods 
The beginning of the activity of Rivail’s group in 

the elaboration of quantum mechanical continuum 
methods is generally assigned to the year 1976.” The 
basic setup of the method was in fact detailed in a 
preceding paper,53 which contains other items of 
interest, such as the determination of the dispersion 
component of the solvation energy and the search of 
the equilibrium geometry in solution. 

In their 1976 paper, as well as in the preceding one, 
Rivail and Rinaldi adopted the MPE approach, in a 
spherical cavity, with the one-center expansion of Q0 
up to terms with I = 7. The quantum problem was 
dealt with by means of the CNDO semiempirical 
method. The extension to ellipsoidal cavities, already 
examined in section III.B.2 for the classical model,lo4 
was later extended to quantum systems in an ab 
initio version. lo5 Again, the one-center expansion of 
Qo is employed, with I I 6 (higher I values give, for 
the cases there examined, negligible contributions). 
The solution of the quantum problem is reached 
iteratively. The reaction field factors 6” are intro- 
duced both in the CNDO and in the ab initio SCF 
version. The Fock matrix is modified, with respect 
to a calculation in vacuo, according to 

In regular cavities the 6” factors have analytic 
expressions, and this property can be exploited to 
compute analytic first and second derivatives of the 
free energy with respect to  nuclear coordinates.162 
Another improvement concerns the inclusion of elec- 
tron correlation, by means of many-body perturbation 
theory.265 

Extensions of the MPE approach to multicenter 
expansions of Q, and to cavities of general shape 
have been recently considered by Dillet et a1.Io8 
(Distributed expansions with regular cavities are not 
convenient in SCF calculations.) In this case, the 
6”;’ factors do not have an analytic expression. The 
use of a multicenter expansion makes the limit I = 6 
quite satisfactory. (The test is made on formamide 
as a solute.) This new method is not yet implemented 
in quantum SCF versions. 

No attention is paid, in the papers of Rivail’s group, 
to  the problem of quantum tails in the electronic 
distribution outside the cavity. 

The Rivail-Rinaldi algorithm is quite flexible and 
it has been applied to numerous chemical problems. 
A computer program is now available.251 

The first ab initio SCF-continuum method treating 
all the electrons of the solute on the same footing is 
that proposed by Hylton, Christoffersen, and Hall.2663267 
The method is of the MPE type in a spherical cavity, 
with inclusion of the reaction field potential operator 
in the Fock matrix. The Fock matrix is expanded 
over floating spherical Gaussian orbitals (FSGO) and 
in the evaluation of the matrix elements the specific 
features of this kind of basis set (no longer in use 
nowadays) are exploited. The one-center expansion 
of Qo is limited to I = 3 (octopole). The authors give 
due emphasis to the problem of quantum tails of the 
electronic density outside the cavity; they introduce 
a “penalty function’’ forcing the electrons to  be 
essentially inside the sphere. We have already 
considered this problem, which is neglected in other 
MPE formulations, in connection with the “renor- 
malization” procedure in ASC methods. Under other 
aspects the method is similar to that of Rivail and 
Rinaldi we have already examined. An interesting 
proposal for the optimization of geometry of a solute 
cluster immersed in the cavity has been presented 
in a third paper.268 Unfortunately this method, to  
the best of our knowledge, has not found further 
applications. 

Tapia and G o ~ c i n s k i ~ ~  present a general formula- 
tion for a dipolar reaction field. A direct variational 
solution of the quantum mechanical problem is 
searched, with the introduction of the J ( W  func- 
tional, eq 71, and the relationship of this approach 
with iterative procedures is discussed. The algorithm 
is here implemented at the CNDO level, for spherical 
cavities. 

This method, which could be better qualified as 
“quantum-Onsager”, has been named SCRF (self- 
consistent reaction field), an acronym used also for 
other methods not limited to dipole reaction fields 
in spherical cavities. The SCRF (or quantum-On- 
sager) method has been later implemented for a 
variety of semiempirical H a “ i a n s  (INDO, MNDO, 
AM1, PM3, etc.) and applied to several chemical 
problems, by Tapia and other authors.56J49~269-278 

A special mention is due to the Karelson-Zerner 
group. These authors have applied the quantum- 
Onsager method to a number of chemical prob- 
l e m ~ . ~ ~ ~ - ~ ~ ~  They also addressed several method- 
ological questions, among which we quote the analy- 
sis of theprguments leading to the factor (1 or l/2) in 
front of $A, in the basic equations of the quantum 
continuum model (eqs 52 and 60). The analysis is 
formally limited to the case of the dipolar operator, 
but may be extended to other forms of 7’:. We 
already discussed this point in section W.A. Another 
point of methodological and computational interest 
is the analysis28s of artifacts occurring in the geom- 
etry optimization with numerical gradients, when the 
SCRF method is inserted281 into the AMPAC293 and 
MOPAC294 semiempirical packages. We shall recon- 
sider later this subject. 

The quantum-Onsager model has been reformu- 
lated by Wong, Frisch, and Wiberg295 in the ab initio 
framework. The pseudo-Hartree-Fock equation is 
solved iteratively. The model has been also imple- 
mented for the Mprller-Plesset (MP2) and quadratic 
CI (QCI) methods, and it may be extended to higher 
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levels of the quantum molecular theory. The method 
is supplemented with efficient and compact subrou- 
tines for the evaluation of energy first and second 
derivatives with respect to geometrical param- 
e t e r ~ . ~ ~ ~ , ~ ~ ~  This implementation is part of GAUS- 
SUN91 package298 and of the most recent version of 
it, GAUSSIAN92.299 The continuum solvent calcula- 
tion can be linked without difficulty to other facilities 
provided by the GAUSSIAN programs, such as 
several analyses of the solute wave function, computer- 
guided optimization of geometry (with a fured cavity), 
evaluation of harmonic frequencies in the presence 
of the medium, etc. 

This version of the ab initio continuum method 
fulfills almost all the expectations of a wide category 
of potential users: a program easy to handle, with 
very few parameters in the input (just the dielectric 
constant and the cavity radius) and with a rich 
output. Several applications have been presented by 
Wiberg's group300-303 and quite probably a good 
number of papers by other authors have escaped our 
attention, given the wide diffusion of the GAUSSIAN 
programs and their readiness of use. 

The perspective of a widespread application of this 
method in computational chemistry prompts us to  
repeat here some warnings already expressed in this 
review. The Onsager model has given a very impor- 
tant contribution to the understanding of phenomena 
occurring in solution; analogously, the SCRF (quan- 
tum-Onsager) approach, when properly applied, yields 
valuable insights, as most of the papers quoted in 
this section demonstrate. However, naive use of the 
quantitative values obtained with the SCRF method 
may lead to serious errors of interpretation. 

We have already reported examples of the poor 
convergence of AGe1 with respect to the number of 
ZZ-poles in the expansion of @,,. As an additional 
example we quote here an analysis of the perfor- 
mance of the sphere + dipole model (in its classical 
version), compared with more refined ab initio PCM 
calculations on the anomeric effect.304 The confor- 
mational energy profiles are not reproduced at all 
(several conformations have a vanishing to>al dipole 
moment, for symmetry reasons, whence I; = 0 in 
the dipolar approximation). Even more important is 
the failure of this approach to reproduce the correct 
trends in the conformational dependence of one of the 
basic quantities in the model, when the values of the 
other parameters are drawn from more accurate 
calculations or from experiment. For instance, com- 
pute AGel from the values of dipole p and polariz- 
ability a of M, and cavity volume, or the latter from 
AGel, p ,  and a. In spite of these critical remarks and 
warnings, the Wong-Frisch-Wiberg computational 
procedure represents an important factor extending 
the consideration of solvent effects in applied quan- 
tum chemistry. 

Mikkelsen et al.305 adopt a multipole one-center 
expansion, with M inserted in a spherical cavity. The 
formal approach is not different from that of Rivail 
and Rinaldi.54 The calculations are performed at the 
ab initio HF level. The authors are interested here 
in the study of solvent effects in the photoionization 
of small ions; for this reason they pay particular 
attention to the HF orbital energies. They also 
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compare the results obtained when M is the bare ion 
or when it includes the first solvation shell (M = 
X(HZO)~P*). In the latter case, the inaccuracy due to 
an oversimplified description of the solute- solvent 
interactions (electrostatic only) is minimized. In the 
same year Mikkelsen et a1.306,307 presented another 
formulation of the same model (one-center multipole 
expansion in a spherical cavity), passing through the 
definition of the ASC 0. The continuum approach is 
then extended with the introduction of an effective 
Hamiltonian in terms of medium field operators 
satisfying the Boson algebra and of Glauber trans- 
formations to  derive an explicit time-dependent 
equation. 

The method has been extended to MCSCF wave 
functions308 and is applied to electron-transfer reac- 
tions in s o l ~ t i o n , ~ ~ ~ - ~ ~ ~  to photoelectron and Auger 
spectra, as well as to other photophysical proc- 

Clearly we are going beyond the limits 
imposed by our definition of the basic continuum 
model, and we are entering a domain requiring a 
separate review. A short account on nonequilibrium 
solvation processes is given in section VII. 

2. Multicenter Expansion Methods 
The quantum continuum-dielectric models devel- 

oped by Cramer and T r ~ h l a r ~ ~ ~ - ~ ~ ~  differ under 
several aspects from others examined in section N.B. 
The quantum description is performed at the semiem- 
pirical level using the AM1293,319 and PM3193,320,321 
methods. The electrostatics is treated at the ex- 
tended Born level, with a cavity of molecular shape 
(interlocking spheres). The solute-solvent interac- 
tions are also parameterized in a semiempirical 
fashion, with parameters specific for each solvent. 
Until now, a full set of parameters has been pub- 
lished only for water. 

As in all quantum continuum methods the matrix 
elements of the one-electron Hamiltonian, or the Fock 
matrix elements F,,, are modified by introducing a 
term due to  the solvent reaction field: 

(73) 

Here k and I are atomic indexes (1 is the atom to 
which the basis function p belongs). The atomic 
charges q k  are obtained from Mulliken population 
analysis 

(74) 

and are determined self-consistently in the presence 
of the solvent. The Coulomb integrals YkZ play a 
pivotal role. Their expression is taken from Still et 
a1.,220 with some additions and changes. Y k k  = l / U k  
is the inverse of an effective atomic radius, and ykl  
( K  * I) depends on the radii Uk and uz and on the 
interatomic distance ?-kZ. The functional dependence 
is chosen so that the simple formula 

(75) 
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described as an ASC approach, with a cavity of 
molecular shape. The tessellation of the spheres 
making up the surface was originally based on 
parallels and meridians and, later, on the inscribed 
pentakisdodecahedron; at the same time more refined 
shapes of the global surface were elaborated (see 
sections 1I.C and III.D.4). 

The quantum mechanical calculation is performed 
making use of two nested cycles; the internal cycle 
calculates the qkmn charges, from the @E’ distribu- 
tion; the external one determines an improved solute 
charge distribution @E”’. As described in section 
IILD, the internal cycle may be replaced by a matrix 
inversion procedure or by an approximate closure 
relationship; the latter is computationally very ef- 
fective. The number of external iterations needed to 
achieve a good convergency usually does not exceed 
4. 

In all the versions of the PCM program, attention 
is paid to  a proper renormalization of the total 
apparent surface charge, i.e. to  the effect of electronic 
density tails outside the cavity. A recent implemen- 
tation,lgl based on the matrix inversion BEM formal- 
ism and the direct minimization of Gel, is not neces- 
sarily faster than the iterative one (the efficiency 
ratio depends only on the computer architecture); 
however, this approach allows one to clarify the 
mutual interaction between nuclear and electronic 
components of @M and (5, to define better renormal- 
ization procedures, and to compute analytic first and 
second derivatives of Gel with respect to  nuclear 
coordinates and other parameters, such as the di- 
electric constant E or the radii of the spheres defining 
the cavity. The derivatives with respect to  the 
coordinates are necessary for efficient computer- 
driven geometry optimizations, and for the calcula- 
tion of harmonic force fields and frequencies. The 
other derivatives are useful for extensions of the 
model to  supercritical fluids, to  derive expressions of 
the solvation enthalpy, to  study the effect of tem- 
perature and pressure, etc. 

In the standard PCM procedure the electrostatic 
free energy is given by eq 60, and the corresponding 
contribution to the solvation free energy is 

correctly yields the free energy of a system of charges 
in spherical cavities of the dielectric, in the limit of 
large interparticle distances (generalized Born equa- 
t i ~ n ~ ~ ~ ) .  There are a few semiempirical parameters 
in Cramer and Truhlar’s expression of Y k l .  The 
optimization of the parameters is not based on the 
values of Gel alone, but on a more general expression 
of the solvation free energy, including other contribu- 
tions. Besides the electrostatic one, the two most 
important terms are the cavitation and the dispersion 
energy; they are collected in the empirical formula 

AGCDS = z‘dk (76) 

Here (5k a constant specific for each atom type and 
Ak is the solvent-accessible surface area of atom k 
(also depending on some geometrical parameters for 
its definition). The modeling of solute-solvent in- 
teractions in terms of solute surface area has a long 
history that we cannot resume here, for reasons of 
space. Equation 76 introduces further parameters, 
part of which (the ah’s) are simultaneously optimized 
with those contained in Y k l ,  to fit a large set of 
experimental solvation free energies. 

The model has been improved several times and 
adapted to cover different scopes. The latest avail- 
able version (AMSOL 4.0323) is based on Dewar’s 
AMPAC 2.1319 and incorporates the parametrizations 
called SM1, SMla, SM2, and SM3. An automatic 
geometry optimization facility is provided, based on 
numerical gradients. Our personal experience with 
AMSOL is limited; we confirm that good values of 
A h y d r  are normally obtained for equilibrium com- 
pounds (compared to complete PCM calculations or 
to  empirical group contribution estimates324). We 
signal considerable difficulties in achieving geometry 
optimization for the TS of some organic reactions; we 
suspect, however, that these problems are due more 
to the semiempirical part of the program than to the 
solvation model. In some cases more serious artifacts 
affect the results. As an example, we quote an ab 
initio study on the aldol condensation in aqueous 
solution, showing that a water molecule acts as a 
catalyst;325 a parallel (unpublished) studgZ6 applying 
AMSOL suggests an increase of the activation energy 
when a water molecule is “added” to the “solute”. 
However, this effect is also present in AMPAC 
calculations in vacuo and is simply not cancelled by 
the solvation contribution to the free energy profile, 
obtained with AMSOL. Cramer and Truhlar suggest 
that accurate potential energy surfaces can be ob- 
tained by adding the AMSOL solvation energies to  
high-level ab initio results computed in vacuo;327-330 
this procedure in most cases eliminates the largest 
source of error, i.e. the semiempirical approximation 
of the solute energy. 

The approach recently developed by Gogonea and 
O s a ~ a ~ ~ ~ , ~ ~ ~  is also based on Still’s et al. approachZ2O 
and has several aspects in common with that of 
Cramer and Truhlar. We shall examine this method 
in section V.C.4. 

k 

3. Apparent Surface Charge Methods 
The polarizable continuum method (PCM) was first 

elaborated in the ab initio version.57 It can be 

(77) 

where E(O) is the energy eigenvalue of the Schrodinger 
equation in vacuo. 

A semiclassical PCM version has been proposed by 
Miertui and T ~ m a s i ; ~ ~  in this approximation the 
polarization of the solute due to the solvent reaction 
field is neglected. The solvation free energy in this 
case is given by eq 16, i.e.: 

This quantity is the best approximation of AGel 
which can be defined within a rigid continuum model. 
The AGL?’ values are routinely obtained in the stan- 
dard PCM procedure, at the end of the first inner 
cycle (determination of the apparent surface charge 
for the density computed in vacuo). We have 
accumulated during the years a large body of results, 
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which have been used as numerical evidence to set 
up a sequence of intermediate approximations, start- 
ing with AGel of eq 77 to  end with very simple 
expressions. This subject will be considered in sec- 
tion N.C. 

It is very simple to adapt the PCM procedure to  
other levels of computational quantum mechanics. 
Persico and T o m a ~ i ~ ~ ~  have employed the so called 
“half-electron Hamiltonian” with 3 x 3 CI, a simple 
method which describes, with a low computational 
effort, the features of systems undergoing (T or n 
bond breaking.334 Extensions of the procedure to 
excited states, using the simple electron-hole the0rS,3~~ 
or more refined versions336 of this HF-like method, 
have been in use for a 1 0 n g t i m e . ~ ~ ~ - ~ ~ l  Unrestricted 
Hartree-Fock (UHF) wave functions are also being 
used currently.342 MCSCF, MBPT (levels 2-41, 
CASSCF, MR-SDCI, and other methods going beyond 
the HF approximation, have been implemented in the 
PCM procedure (see e.g. Aguilar et al.179). The 
description of electron correlation in solution will be 
treated in more detail in section 1V.D. 

There are several applications of the PCM to 
semiempirical descriptions of the solute wave func- 
tion. The conjugation of semiempirical methods, 
based on ZDO, NNDO, or other similar approxima- 
tions, with the PCM or other ASC approaches, gives 
several variants, concerning the calculation of the 
reaction potential CP, and of the Fock matrix ele- 
ments. 

An important step in the determination of CP, is to 
calculate the apparent surface charges q k ,  eqs 31,35, 
and 37: 
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There are several methods for computing the semiem- 
pirical molecular electrostatic potential (MEP) %I, 
required in eq 79. These methods have been tested 
and discussed for the representation of MEP in 
vacuo.343-351 They may be classified as “quasi-ab 
initio” or “direct” descriptions (with some variants 
within the two classes). In the “quasi-ab initio” 
descriptions the semiempirical wave function is de- 
orthogonalized and then expressed in terms of a 
Gaussian basis set. In the “direct” description the 
semiempirical wave function is used without modi- 
fications. The second class of methods is well rep- 
resented by a recent proposal by Ford and Wang;350 
they introduce a semiempirical function to evaluate 
the nuclear contributions, with parameters calibrated 
against HF/6-31G* results. The ab initio MEPS of a 
variety of molecules are accurately reproduced. 

The evaluation of the @I Yhlv) contributions to  the 
Fock matrix elements, eq 59, presents similar op- 
tions. The largest integrals are those with p and Y 
belonging to the same atom. (Remember that (Dg is 
reduced to a sum of qdjr - Ski terms, with q k  not 
centered on any atom of M.) The discussion is now 
centered on the use of the Dewar-Sabelli-Klopman 

which includes empirical parameters 
fitting monopole, dipole, and quadrupole terms of the 
elementary charge distribution p*v or  of simpler 
alternatives. Apparently some of the latter give 
better results. The details of these methodological 

investigations can be found in works of the last 

MiertuS and c o - w o r k e r ~ ~ ~ ~  presented a CNDO/2 
version cf PCM, based on a “quasi-ab initio” descrip- 
tion of 9;. To speed up calculations, the o charge 
density is assumed constant over the spherical por- 
tion of the surface belonging to a given atom. On 
this portion of the sphere a few values of o are 
computed (3 or 4), in points where the electrostatic 
potential has an extremum, and an average is then 
employed. 

Chudinov et a1.210 point out that simple expressions 
of the elementary charge distribution p*v give better 
results than the Dewar-Sabelli-Klopman formula, 
when applied to MNDO wave functions. To gain 
computational efficiency, they proposed a modified 
iterative scheme, reducing the number of SCF cal- 
culations, and revised definition of the surface ele- 
ments. 

The better performance of a simplified p*v charge 
distribution is confirmed by Luque et al.,89 using AM1 
wave functions. When applying their most effective 
approximate formula, they also confirm that f = 1.2 
is the best scaling factor for the van der Waals radii 
used in the definition of the cavity. In a preceding 
paper, the same authors355 compared the AM1 and 
MNDO versions of PCM. Quite recently the same 
authors357 presented an optimized AM1 version of the 
method, yielding root-mean-square deviations of 
AGsol in the range of 1 kcaVmol for neutral solutes. 
The attention is here focused on the cavity radii for 
hydrogen. A factor f =  1.2 is everywhere applied but, 
for hydrogens bonded to heteroatoms, smaller radii 
give a better agreement with the experimental re- 
sults; the same was found in ab initio ca lc~la t ions .~~ 
The method is implemented in the MOPAC pro- 
gram.lg3 

Wang aqd Fordls2 propose a still simpler expression 
of the @IT$lv) matrix elements for the AM1 and 
MNDO methods; their approximation allows one to 
avoid the calculation of the electric field due to the 
induced charges. Their version of the ASC approach 
(see section III.D.3) is based on the matrix inversion 
technique and the operator #$) + 8g2, interpreted 
by the authors as the effective Hamiltonian of the 
model; we have already discussed the generally 
accepted point of view on the status of this operator 
and its relationship with the Schrodinger equation 
and the free energy. This method has been applied 
to S N ~  and S N ~  reactions and to amino acid tautom- 
e r i ~ m . ~ ~ ~  

Rauhut et al.215 point out that a full NDDO 
expression of the @14;1v) integrals gives good re- 
sults, when combined with the original PCM proce- 
d ~ r e ~ ~  for the charge compensation and with the 
NAOPC for the calculation of %I values on 
the cavity surface. 

The matrix inversion ASC approach, with direct 
minimization of Gel, has been thoroughly elaborated 
by the Sakurai group.1so They also extend the model 
to a nonhomogeneous continuum solvent, divided into 
regions with different dielectric constants. Hoshi et 
a1.I8l present four approximated formulas for the 
calculation of the @ I  Yhlv) integrals and of the cor- 
responding differentials, leading to the evaluation of 

years,89,181,182,210,215,354,355 
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TO,,. In the last two approximations special care is 
taken to optimize the shape of the MEP near het- 
eroatoms. The method has been implemented at the 
CND0181 and MND0360 levels and used to calculate 
hydration enthalpies of organic molecules. In a more 
recent paper,211 MNDO, AM1, and PM3 semiempiri- 
cal results are examined, to  bring out the effects of 
some parameters of the method, such as the atomic 
radii defining the cavity, the number and shape of 
the surface elements, and the effect of correlation (I1 
order Brillouin-Wignermpstein-Nesbet perturba- 
tion theory, applied to the MNDO Hamil t~nian~~l ) .  

We do not report here the formidable apparatus of 
matrices employed by Hoshi et a1.180 to present their 
method (the number and size of matrices to  be stored 
during the calculations is probably the reason why 
this nice method has not yet been implemented in 
the ab initio framework). The method has been 
reported in Table 6 under the heading “PCM, 
because it relies on the basic setup of the PCM. The 
only criticism we express to  this elaboration of the 
matrix-inversion BEM procedure is that the formal 
consequences of the procedure here applied to renor- 
malize o have not been paid sufficient attention. A 
more appropriate renormalization of the two compo- 
nents o,l and on,,, eq 54, greatly improves the results 
and reduces the computational times.lgl 

This method has been recently applied with ap- 
preciable results to  more complex systems, such as 
the decarboxylation reaction catalyzed by cyclodex- 
trins, to  compare reaction parameters in vacuo, in 
homogeneous solution, and in heterogeneous me- 
dia.211 

The semiempirical (INDO/S CI) PCM formulation 
presented by Fox and R o s ~ h l ~ ~  is addressed to spec- 
troscopical problems and will be reviewed in section 
VI1.C. The same holds for other semiempirical PCM 
approaches by the Basilevsky group, addressed to 
specific chemical problems (see sections VI1.B). 

Finally, we recall to  the reader’s attention that the 
COSMO methodlg2 (Klamt and Schuurman, 1993), 
summarized in section III.D.3, has also been imple- 
mented in the MOPAC package,lg3 in conjunction 
with semiempirical methods. 

4. Image Charge Methods 
The model elaborated by K a r l ~ t r o m ~ ~ ~  consists of 

a sphere encircled by a set of image point charges 
and dipoles, evaluated with the approximations given 
by Friedman.168 The solute charge distribution is 
obtained by multipole decomposition of the p*v 
elementary distributions (here p and Y run over all 
the basis functions). The quantum problem is solved 
iteratively and the free energy is computed by 
subtracting half of the solute-solvent interaction 
WMS, eq 60. 

Karlstrom allows for solute displacements and 
geometrical relaxation inside the cavity. To avoid 
catastrophes (i.e. negative divergencies in the value 
of WMS), he introduces a repulsive potential function 
between the image elements and the solute nuclei,363 
of the type V = A/Rf&,uc, or between images and 
solute electrons,364 of the type V = AI1 - exp(-Ri,,,l/ 
a)P;  here A and n are empirical constants (n  = 12). 
In the last paper Karlstrom extends his method to 
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CASSCF wave functions. The use of a spherical 
cavity greatly speeds up the calculations. We have 
already pointed out the deficiencies of this ap- 
proach: the readjustment of the position of M inside 
the cavity may help in reducing these drawbacks. The 
results are however dependent on the form and 
parameters of the repulsion function. 

5. Direct Field Methods 
The basic idea behind the direct reaction field 

(DRF) approack consists in replacing the reaction 
field operator 2; (eq 7), dependent on the solute 
charge distribution @M, with an operator based only 
on the single solute particles. This approach has 
been considered by Hylton et al. in their first paper,z66 
but it has been extensively used by van Duijnen’s 
group. 

The first formulation of the DRF approach given 
by van Duijnen’s group describes the medium as a 
set of interacting point p ~ l a r i z a b i l i t i e s . ~ ~ ~ * ~ ~ ~  Al- 
though not directly related to  a continuum descrip- 
tion of the medium, we use that formulation to clarify 
the meaning of the DRF formalism. 

The Hamiltonian that approximates the energy of 
the whole system is written as 

with 

where indexes i a n d j  run over the solute particles 
(electrons and nuclei) and p and q over the external 
polarizable points. Fip is the field of the particle i at 
the position of the polarizability p ,  gives the 
dipole induced at q by a field applied at point p 
(response matrix element). With this formulation it 
is possible to get a direct solution of the correspond- 
ing Schrodinger equation (in contrast with the usual 
reaction field formulation which requires th,e knowl- 
edge of the solution Y to  get the operator YL). The 
applications cover a wide range of solutes: structure 
of water dimers,366 hydration and protonation free 
energies of amines and glycine,367 proton transfer in 
the active sites of a ~ t i n i d i n ~ ~ ~  and papain,369,370 
interactions between polypeptides.371 

This approach opens some problems of interpreta- 
tion. The use of the operator FRF of eq 80 does not 
correspond to the introduction of electrostatic polar- 
ization effects that are properly defined only when 
averaged distributions are used. The additional 
energy contributions have been interpreted as due 
to dispersion contributions (see section V.C.3). The 
direct considerations of the electron coordinates i and 
j has been interpreted as corresponding to a limiting 
case, in which electrons in the solute move much 
more slowly than those in the solvent; this ap- 
proximation has been employed to study dynamical 
aspects of chemical reactions (see section VILE). 

Coming back to van Duijnen’s methods, the original 
proposal has been recently recast in a more general 
formulation,372 in which the continuum model plays 
a role. The whole material system is partitioned into 
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three subsystems: a “quantum motif” Q, which may 
be described by a wave function of any desired quality 
(until now the SCF level has been adopted in ap- 
plications); a set of “classical motifs” A, B,  etc., each 
represented by point charges and polarizabilities (at 
least one polarizability for each classical motif); and 
a continuous medium characterized by the static 
dielectric constant E and by the inverse of the Debye 
screening length K - ~  (to simulate finite ionic strengths). 

The continuous contributions t o  ?: are described 
within the ASC formalism, with apparent charges 
generated by the electric field of the quantum and 
classical motifs. In the latest version372 the full DRF 
solution is given in matrix form. The matrix collects 
both surface charge and polarizable point contribu- 
tions. The use of an average of the continuum 
contributions is suggested to get rid of an unphysical 
dispersion contribution. See ref 197 for further 
comments and ref 373 for a simplified version using 
perturbation theory techniques. 

The linear DFR expressions are used in other 
discrete solvation models; see e.g. Basch and Hoz374 
for a recent version of this approach. Van Duijnen 
and co-workers suggest the possibility of considering 
the motifs Q + A + B + ... as components of a single 
large molecule (e.g. a protein), but many applications 
refer to  simpler solutes Q, with A, B,  etc. representing 
a number of solvent molecules to be treated with 
computer simulations. This last type of application 
is a variant of the discrete solvation models supple- 
mented with a description of the distant solvent 
electrostatic effects. As already stated in the intro- 
duction, we shall not include in the the present 
survey this kind of approaches, which have given 
many valuable contributions to  the study of chemical 
properties in solution, and deserve a separate review 
to document recent p r o g r e s ~ e s . ~ ~ - ~ ~  

6. Vidual Charge Methods 
The attempt of extending the Born model to  a set 

of point charges led in the past years to  the formula- 
tion of another variant of electrostatic continuum 
models, characterized by the introduction of a limited 
number of fictive charges not explicitly deduced from 
the electrostatic equations of a system composed of 
solute + dielectric solvent. 

The first explicit formulation of this model is due 
to K l ~ p m a n . ~ ~ ~  In this model an imaginary particle, 
called solvaton, is associated to each atom A of the 
solute. The charge of the solvaton, Qi ,  is equal in 
magnitude and opposite in sign to the Mulliken 
charge q ~ .  The position of solvatons is not fixed; in 
the calculation of the interaction between Q i  and 
another atom with charge q B ,  the solvaton is placed 
at the position of atom A; the interaction of QZ with 
QA is computed assuming a distance equal to  the van 
der Waals radius of A. Interactions between solvents 
are discarded. 

This classical formulation has been incorporated 
in a semiempirical SCF-MO procedure by Germ- 
er376,377 and later reelaborated by Miertus and Ky- 
se1,378,379 by Constanciel and Tapia,380*381 and by 
 other^,^^^^^^^,^^^^^^^-^^^ introducing corrections and ad- 
ditions, based in part on preceding  formulation^.^^^-^^^ 

The detection of formal errors in the first versions 
of the solvaton or virtual charge model (VCM), and 
the occurrence of unsatisfactory results, stimulated 
the elaboration of alternative formulations. Almost 
all the published papers, even those addressing 
specific applications, introduce some methodological 
changes. The efforts to  supply this approach, so 
appealing in its original simplicity, with a sounder 
physical basis, led to  models which are variants of 
the ASC methods.78 

C. A Strategy for Reducing the Quantum Problem 
We have thus far considered the basic model: a 

solute at infinite dilution, immersed in a isotropic 
medium with linear dielectric properties, and de- 
scribed by a Hartree-Fock effective Hamiltonian. 

In analyzing this model we have separated the 
computational problem into two parts, which are 
nevertheless coupled: electrostatics and quantum 
mechanics. In doing so, we have concentrated first 
on classical models, which may be considered as 
simplified representations of the whole problem. 
(The historical development has been different; the 
earlier models were exclusively classical and they 
incorporated an increasing amount of molecular 
information based on quantum mechanics.) 

It is convenient now to start from the full quantum 
mechanical solution of the problem and to introduce 
a hierarchy of approximations leading, step by step, 
to  more efficient algorithms, suitable for solutes of 
increasing size, but also to  a reduction in the infor- 
mation contained in the computational results. The 
sequence of approximations we shall describe is 
accompanied by a set of protocols to check the quality 
of the results. 

The general strategy is based on the “semiclassical 
approach” we developed in the past years to  treat, 
on the same footing, intramolecular interactions, 
internal geometry relaxation, intramolecular interac- 
tions in vacuo, solvent effects, and electronic excita- 
tion. We cite a few papers from our group, reflecting 
the evolution of this a p p r o a ~ h . ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ - ~ ~ ~  Other 
authors have adopted the same basic  concept^,^^^^^^^ 
but without applications to  solvent effects. Also the 
method elaborated by van Duijnen’s group (see sec- 
tion IV.B.5) has many features in common with the 
approach here described. 

In the semiclassical approach the basic units for 
the analysis are the charge distributions of molecular 
subunits. We shall define subunits in terms of 
localized orbitals (LO). The charge distribution as- 
sociated with each subunit includes the proper share 
of nuclear charges, in order to be electrically neutral 
(special provisions are made for ions). We shall 
denote by e(g,O) the charge density of the chemical 
group g (e.g., the >C = 0 or the > N  - CHO groups), 
by definition independent of the chemical environ- 
ment. The g(g,O) functions, called prototypes, are 
expressed in a LCAO form, as the total charge 
distribution @M. In fact, they derive from ab initio 
calculations on a suitable set of molecules, followed 
by a partitioning into LO and submitted to an 
averaging procedure. 

The prototypes e(g,O) may be refined or submitted 
to further simplifications. The refinement consists 
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in allowing for the polarizing effect of the electric field 
generated by the remainder of the molecule M, called 
F(g/M,O). Under the influence of F(g/M,O) the 
electron density of the group g is modified to e(g/M,O). 
If we also take into account the polarization induced 
by the solvent reaction field, the charge distribution 
of g becomes e(g/M,o). The recipes to get e(g/M,O) or 
e(g/M,a) are given in refs 249,405,406,407, and 410. 
This said, we move on to describing the sequence of 
approximations for the evaluation of solvent effects. 

Approximation I .  This is the full PCM description 
of the system. The electrostatic contribution to the 
solvation free energy is computed as a difference: 

AGel,l = Gel - E''' (82) 

The Gel values define a potential energy surface in 
solution. 

Approximation 2. The level of the theory is the 
same as in Al ,  but the solvation free energy is 
approximated as in eq 16: 

Chemical Reviews, 1994, Vol. 94, No. 7 2053 

dure to get a better approximation of both @M and 
Q0. Three cycles insure almost perfect convergency, 
but we normally stop the process after the first step. 
Here and in the following, &,,n is the reaction field 
potential pertinent to  approximation n and computed 
from the charge density @M,n.  The expression of the 
solvation free energy is 

(83) 

This approximation may be justified by invoking the 
virial theorem and by neglecting differences in the 
average electronic kinetic energies in vacuo and in 
solution. At this level, as well as in all the following 
approximations, the potential energy surfaces in 
solution are defined as the sum of the energy in vacuo 
plus the solvation free energy: 

Gel,n = E"' + AG+ 

When eq 83 is applied to conformational problems, 
it introduces relative errors in low-energy conforma- 
tional surfaces normally less than 0.2 kcal/mol (E(') 
is the same as in eq 82). 

Approximation 3. The solute charge distribution 
is described in terms of the SCF wave function in 
vacuo. The solvation free energy has the form 

The iterative or matrix-inversion PCM calculations 
are no longer necessary. This approximation is the 
most detailed realization of the rigid model, which 
disregards the solute polarization effects. The as- 
sociated error on AGel depends on the size of the 
molecule and on the basis set. With a relatively good 
basis set the differences between approximations 1 
and 3, for the set of amino acids of relevance in 
biochemistry, lies between 6 and 12 kcallmol. The 
relative errors on conformational surfaces are gener- 
ally less than 0.6 kcavmol. 

Approximation 4 .  The prototype functions are here 
introduced; polarization effects due to the molecular 
remainder and to the solvent reaction field are 
allowed for. The resulting charge distribution is a 
sum of group contributions: 

@M,4 = &(g/M,O) (86) 

This definition can be applied in an iterative proce- 
g 

At this level, we do not need to perform ab initio 
calculations on M to determine Gel; E(') can be 
computed by any method, and Ge1,4 is given by eq 84. 
For the determination of conformational surfaces of 
large molecules one can resort to  molecular mechan- 
ics (MM2411 or MM3412p413) or to  other force fields, 
such as AMBER;236,414,415 in this case we find relative 
errors less than 0.5 kcallmol. 

Approximation 5. The prototype functions are 
polarized by the electric field due to the molecular 
remainder, not by the solvent reaction field: 

@M,5 = & ( f l , O )  (88) 

E(@ is again computed independently, for instance 
with molecular mechanics. This approximation ne- 
glects the polarization of the solute, as A3 does at  a 
higher level. The relative errors in the same applica- 
tions are less than 0.6 kcallmol. 

Approximation 6. The prototype fbnctions are used 
without modifications. 

g 

(89) 
g 

Taking again E(O) from molecular mechanics, the 
relative errors in conformational surfaces are of the 
order of 0.6-0.8 kcdmol, with the exception of high- 
energy conformations, in which there is a partial 
reorganization of the electronic distribution (e.g., 
rotation around double C-C bonds or around the 
N-C(O) bonds in peptides). 

Approximation 7. The prototype functions are 
replaced by simpler charge distributions. Several 
partitions of the molecular charge distribution into 
chemical subunits have been proposed, leading to the 
definition of local multipole developments (see ref 249 
for a review); some of them have been applied to 
solvation models. Here we shall consider the proce- 
dure proposed by our g r ~ ~ p . ~ ~ ~ ! ~ ~ ~  The g(g,O) distri- 
bution is replaced by the associated nuclear charges, 
plus one -2 charge, or two -1 charges, for each 
electron pair. The locations of the negative charges 
are determined by the LO charge centers and by the 
conservation of the dipole and quadrupole moments 
of the prototypes. The charge distribution e 7  of the 
molecule is then given by a set of point charges, 
positive (the nuclei) and negative (usually a number 
smaller than the number of electrons). Further 
approximations can be introduced for the study of 
large molecules, by merging an increasing number 
of atomic or partial charges together. We quote, as 
an example, a study of solvent effects on DNA double 
helices with more than 1500 base pairs, subjected to 
internal deformations.417 A simplified classical ver- 
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Figure 2. Correlation of Gel,l and Ge1,3 values (see text) 
for 35 conformations of 1,z-ethanediol diformate (ref 242). 

Table 7. Free Energy Changes (AGel, kcallmol) in the 
Isomerization of N-Methylformamide in Water (c = 
78.6),a with Reference to the Trans Form 
approximation TS(-30") TS(0") TS(+3O0) cis 

1 29.96 27.89 27.26 2.00 
2 27.30 28.95 28.75 3.54 
3 26.20 26.90 26.42 1.99 
4 27.40 29.30 29.00 3.70 
5 23.22 26.65 25.58 1.78 
6 20.40 23.57 23.17 1.52 
7 21.00 24.07 23.62 1.82 
8 18.00 19.69 19.59 0.00 
in vacuo 25.55 24.20 23.42 1.94 

a SCF 4-31G calculations. For approximations 2-8, E(o) is 
computed at the same ab initio level. 

sion of the PCM was applied in the DNA calculations, 
and a more efficient algorithm for globular proteins 
is now under elaboration. 

We report now some examples of the use of the 
sequence of approximations just described. Figure 
2 compares Gel,l and Ge1,3 for a set of conformations 
of 1,2-ethanediol d i f ~ r m a t e . ~ ~ ~  As already said, ap- 
proximation 3 is generally adequate for conforma- 
tional energy differences. 

A more delicate case concerns the solvent effects 
on some features of the trans-cis isomerization of 
N-methylformamide (see Table 7). While in the cis 
and trans conformations the CNRlR2 group of amides 
is planar, both in vacuo and in solvent, the transition 
state is pyramidalized. In vacuo, the pyramidaliza- 
tion angle 8 is about 30°, with the N-substituents 
oriented on the side of the carbonyl group. In 
aqueous solution, the opposite happens: two transi- 
tion states exist, with 8 = f30", but 8 = -30" is 
favored; for 8 = 0 we have a supersaddle point. In 
Table 7 we report the AG values for a set of 
geometries, with respect to the trans isomer. The 
data are taken from Alagona et a1.,4182419 with some 
additions. Other studies on the isomerization of 
amides have confirmed this view and found very good 
agreement with the available experimental data; 
Monte Carlo simulations have been run for N,N- 
dimethyla~etamide ,~~~ PCM ab initio and semiem- 
pirical calculations for N-methyla~etamide ,~~~ and a 
combined HF/MC method has been applied to NJV- 
dimethylf~rmamide.~~~ 

The reaction field Qu is quite sensitive to the 
options and parameters of the calculations; therefore 

Figure 3. Map of (standard PCM) in the molecular 
plane of trans-methyl formate, 4-31G SCF calculation. .. ' 0,. . . -25 /' ,' >, 

//,,..*' 
4 * . . . . ./. 

Figure 4. Map of &,,4 (polarizable prototype functions 
approximation) in the molecular plane of trans-methyl 
formate, 4-31G SCF calculation. 

it is useful to compare Qu maps computed with 
different approximations. In Figures 3 ,4 ,  and 5 we 
show the maps of &I, &4, and &,6 for the trans- 
methyl formate, obtained with the 4-31G basis set 
and drawn in the molecular plane.418*419 In all cases 
the agreement is almost perfect. 

Another type of simplification regards the number 
of surface elements to be considered in ASC calcula- 
tions. There are two steps where the number of 
tesserae might be conveniently reduced: (1) When 
the distribution @M is a sum of local terms (localized 
orbitals, multipole expansions over atoms or bonds, 
point charges), it should be possible to simplify the 
calculation of the B surface density, by neglecting the 
contribution of each local charge component to tesser- 
ae which are far enough. (2) In the same way, the 
self-polarization procedure might be speeded up by 
neglecting the interaction between surface charges 
in distant portions of the surface. 

The r-2 dependence of the electric field on distance 
makes the introduction of approximations 1 and 2 a 
delicate task; probably the partial cancellation of 
solute and solvent polarization charges is the key 
feature of this problem. In our laboratory we are now 
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?. 
, y ' . .  

: ,/-2s I' /'. . *  E, Derivatives of the Free Energy 
The calculation of the free energy derivatives is of 

interest for many applications of the continuum 
models. The variables with respect to  which a 
derivation may be performed are of different nature, 
and we shall group them into three main classes: 

(A) Parameters entering the formulation of the 
basic model. The main model parameters are the 
isotropic dielectric constant E ,  the solvent density, 
and the temperature. The corresponding derivatives 
are related to each other, as dielectric constant and 
density depend on temperature. 
(B) External parameters. The systematic applica- 

tion of external electric and magnetic fields, static 
or oscillatory, permits are to  derive expressions for 
several first- and second-order molecular observ- 
a b l e ~ ~ ~ ~ > ~ ~ ~ .  

(C) Internal geometrical parameters. The param- 
eters defining the geometry of the solute also influ- 
ence the cavity shape. It may be profitable in some 
case to  decouple these two sets of variables, for 
instance to perform derivatives with respect to  the 
nuclear coordinates at fured cavity or to focus the 
attention on the derivatives of the cavity surface and 
volume. 

Some of these derivatives cannot be computed in 
specific versions of the solvation continuous models. 
For example, it is meaningless to consider derivatives 
with respect to  external fields in the extended Born 
models, based on nonpolarizable charge distributions. 
Quantum mechanical versions of the model may, in 
principle, give formally correct derivatives in the 
three cases outlined above. For this reason we shall 
refer to  a quantum formulation, focusing on the 
derivatives of AGel. 

It is convenient to adopt a short-hand notation for 
the first derivative of any quantity, based on super- 
scripts: for instance, the first derivative of Gel with 
respect to  a parameter a will be indicated as G(U) and 
the second derivative with respect to a and ,3 as G(@). 
The calculation of G(u) and G(@) can be greatly 
simplified by resorting to the matrix BEM formula- 
tion of the basic model. The G functional, expanded 
over a finite basis set {x} may be cast in the following 
form, using the notation of refs 430 and 431: 

(90) G = trPh + l/$rPG(P) + V'nuc,nuc 

where 

'1 ' ' : * . l o  ;-a I' 
* * J * . . . * . . *  ..** 

Figure 5. Map of &,,6 (rigid prototype functions ap- 
proximation) in the molecular plane of trans-methyl for- 
mate, 4-31G SCF calculation. 

examining the opportunity of introducing such ap- 
proximations in free energy calculations for large 
molecules. A somewhat similar philosophy underlies 
the use of the extended Born formula in the Still- 
Cramer-Truhlar t r e a t m e n t ~ . ~ ~ O $ ~ l ~ - ~ l ~  

D. The Inclusion of Electron Correlation 
Several, among the quantum versions of the basic 

model we have examined in the preceding section, 
consider a description of the solute going beyond the 
Hartree-Fock level. 

It is in fact an easy task to introduce in eqs 52 and 
60 a more refined description of the wave function. 
The question deserves however a few words of com- 
ment. The introduction of correlation modifies the 
total charge distribution QM; for instance, the dipole 
moments of 0 and N bases are normally reduced. As 
a consequence, the solvent reaction potential QU is 
also changed. On the other hand, the polarization 
induced by the solvent through the reaction field 
modifies in turn the electron correlation effects. 

Parts of these mutual influences have been usually 
neglected in past work. The most frequent case is 
the neglection of correlation effects on the solvent 
Eolarization: the solute-solvent interaction operator 
9; is determined at the HF level and then included 
in the calculation of a correlated wave function. 

To the best of our knowledge, the only analysis of 
the decoupling of the effects mentioned before has 
been made by the group of Olivares del Valle, in 
collaboration with us, using the PCM approach for 
many-body perturbation theory (MBPT) corrections 
to  the HF p i ~ t ~ r e . ~ ~ ~ - ~ ~ ~  The complete calculation, 
called PTDE in Olivares del Valle's terminology, is 
decoupled into two separate calculations. The first 
approximation, called PTE, consists of solving the 
PCM problem at the Hartree-Fock level only, to  
determine the solute wave function and the reaction 
potential. An MBPT correction to the energy is 
computed. In the second approximation, called PTD, 
the calculation of the reaction potential and of AGe1 
is based on the MBPT corrected wave function, 
computed in vacuo. 

(91) V'nuc,nuc - - Vnuc,nuc + '/2wnuc,nuc 

W,,,,,.,,, is the interaction between the component of 
the reaction field generated by the nuclear charges 
of M and the nuclear charges themselves (see eq 56). 

The expression 90 is derived from the pseudo 
Hartree-Fock equation: 

FC' = E'SC' (92) 
with 

F = h + G  (93) 

h = h + 'l2(J + Y) 
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G = G(P) + X(P> 

From the solution of eq 92 one obtains a first-order 
density matrix P, expanded over the basis {x}. The 
other matrices have the following meaning: h is the 
usual one-electron matrix; Jpy is the interaction of 
the solute electronic charge element xkv with the 
component of the solvent reaction potential OU gener- 
ated by the nuclear charges of M (the one-electron 
operator Wel,nuc, eqs 55-57); Ypy, vice versa, is the 
interaction between the nuclei of M and the compo- 
nent of generated by the charge distribution 

,,; G(P) is the usual two-electron contribution to xi? t e Fock matrix; xpy is the interaction between the 
charge distributions x>,, and the components of QU 

generated by the electronic charge of M. Notice that 
the condition J = Y can be fulfilled, with an ap- 
propriate handling of the numerical procedures.lgl 

Frisch et al.296 have shown that 

trPa'F = -trS'a'PFP (94) 

This relation allows one to write a simple expression 
for G(a): 

G(a) = trPH + 1/2trPG'a' - 
trS'aX'PFP + v'a) nuc,nuc (95) 

By differentiation of G(a) with respect to  a second 
parameter p, one arrives at the formal expression of 
the second derivative G(@): 

($@I = trP(P)F'(a) + trp(h'(@) + 1/2G(@) - 

trS'@'PF'P- trS'a' [P@)F'P + PFCa)P + 
PG(P'P')P + PF'P'P'l + V'@' nuc,nuc, (96)  

where S is the overlap matrix and P(B) is obtained by 
solving the appropriate coupled perturbed Hartree- 
Fock equations (Frisch et al.296). Expressions 95 and 
96 are valid for any type of parameters a and p. 
These expressions have a formidable aspect but 
actually they are not much more complex than the 
corresponding derivatives E(a) and E('@ for an isolated 
molecule, widely used in computational chemistry. 
The new integrals are of simple nature (typically one- 
electron integrals regarding first and second deriva- 
tives of the electric field). 

The general expression may be considerably sim- 
plified when the nature of the a and p parameters is 
specified. For example, if a is the dielectric constant 
E the expression of G(a) is430 

= -- 4x [2trPDV1J + 1/2trPD-1X + 
( E  - 112 
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We have introduced here the D matrix collecting the 
geometrical information about the cavity and its 
tessellation (see section III.D.3); qnuc,k and @'nuc,k are 
the contributions, due to the nuclei of M, to  the 
apparent point charge and to the electrostatic poten- 
tial @M, for the surface element K .  

The problem is more delicate when a$ are geo- 
metrical parameters, for instance the radii of the van 

der Waals spheres or the positions of the nuclei, 
normally identified with the centers of the spheres. 
In these cases, one needs the expression of the 
derivatives of the areas of the surface elements Ask. 
In the BEM procedures these terms are connected 
with the D-l matrix elements. 

A relatively simple case is that of fixed-solute 
geometry. For example, a can be an additional 
parameter 5, scaling all the atomic radii Rk which 
define the cavity: 

The G(€) and G(5) derivatives may be used to derive 
expressions of the solvation enthalpy and to 
study temperature- and pressure-dependent phenom- 
ena. 

Analytical formulas have been obtained for all the 
cases occurring when the derivative involves nuclear 
coordinates and cavity surface. The algebra is rather 
involved because there are surface elements Ask cut 
by the intersection of two or more spheres. The most 
complex formulas occur in the calculation of the 
Hessian matrix elements G(@), when the parameters 
a and /3 are two internal geometrical coordinates.431,432 
It is somewhat simpler to  calculate the components 
G(a) of the gradient of G(Q). Both quantities are 
obviously of great value in determining the critical 
points on the G(Q) hypersurface and the normal 
coordinates and frequencies. 

It is tempting to avoid these complications by 
performing derivatives with respect to nuclear coor- 
dinates at  fixed cavity. However we consider it 
necessary to test this approximation with more exact 
calculations. The bold approach of computing opti- 
mal geometries and vibrational frequencies with a 
fured cavity has been adopted by Wong et al.295 Their 
formulation is similar to  that outlined above, but 
specialized for the quantum mechanical Onsager 
sphere + dipole model (called by the authors SCRF 
without any further specification). We have com- 
mented about this model in section IV.B.1; the 
relative crudeness of the model justifies neglecting 
the cavity surface derivatives. Surely in successive 
elaborations of this elegant method the spherical 
cavity and the dipole only field will be abandoned and 
surface derivatives will be considered. 

When the cavity has a regular shape the evaluation 
of G(a) may be profitably performed by resorting to a 
multipolar expansion. A n  efficient program has been 
elaborated by Rivail's g r ~ ~ p ~ ~ ~ ! ~ ~ ~  for ellipsoidal cavi- 
ties. Using a multipole expansion the Hamiltonian 
and the resulting free energy are expressed in terms 
of the reaction field factors 6" depending only on 
the geometry of the cavity and on E (see section 1II.B). 
The expression of G(a) may be thus obtained with 
standard procedures available in quantum chemistry 
packages. Rinaldi et proceed a step further. The 
variation of any nuclear coordinate a modifies the 
inertial axes and the Eulerian angles defining the 
ellipsoidal cavity; the 6" factors are thus modified 
and their derivatives must be computed. Analytical 
expressions for these derivatives are available. 104~159 

Rivail's group is now considering cavities of more 
general shape, using the already quoted GEPOL 
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formalism.213 A procedure for geometry optimiza- 
tions based on approximate analytic gradients has 
been p r e ~ e n t e d . ~ ~ ~ , ~ ~ ~  

Other authors have investigated methods to  opti- 
mize the geometry of solutes: a comparative evalu- 
ation of the different approaches has not yet been 
performed. Klamt and S~hUiirmann’~~ include in 
their COSMO method an evaluation of the deriva- 
tives of the energy with respect to  atomic coordinates 
with a simplified expression. The areas and shapes 
of the tesserae, as well as the solute charge distribu- 
tion @M, are kept fured. Chudinov and Napolov435,436 
propose a computational scheme for geometry opti- 
mizations, based on a partially numerical evaluation 
of the gradient, coupled with the analytical determi- 
nation of the derivatives of surface elements. A 
strategy for geometry optimization based on the 
numerical evaluation of the gradient has been also 
proposed by Bonaccorsi et a1.437 To save time three 
variants of the method have been combined: (1) 
energy gradient computed at a fxed (T distribution; 
(2) gradient computed with fixed cavity and variable 
a; (3) gradient computed changing the cavity and a. 

Semiempirical methods using an ASC ap- 
p r o a ~ h ~ ~ ~ , ~ ~ ~ - ~ ~ ~  compute the numerical energy gradi- 
ent without any further approximation. The deter- 
mination of saddle points is a more delicate task than 
the location of minima. Using the AMSOL pro- 
gram314-318 we have found reasonable results (within 
the limits of the semiempirical method), but in some 
cases the search failed. 

The evaluation of derivatives of the cavity surface 
and volume is of interest on its own, since there are 
several applications requiring a direct knowledge of 
these parameters. In general a tessellation of the 
surface is not necessary, and the computational task 
is thus reduced. We report here a list of pertinent 

find the details of the various methods in the original 
papers. 

feferen~e~.187,198,199,201-204,331,332,438-440 The reader will 

V. Definition of Equilibrium Thermodynamical 
Functions 

A. The Free Energy of Solvation 
Up to now we have only considered the electrostatic 

component AGe1 of the total solvation free energy, 
AGsol. We shall now consider a move complete 
definition. 

For molecular formulations of the solvation prob- 
lem (simulations, effective Hamiltonians, and other 
approaches mentioned in section I) it is convenient 
to  adopt Ben-Naim’s definition of a solvation proc- 
ess.441-443 According to Ben-Naim, the solvation 
process of a solute M in a solvent S consists of 
transferring M from a fixed position in the ideal 
gaseous phase to a fmed position in S, at  constant T, 
P, and chemical composition. The Gibbs free energy 
of solvation can be related to the work necessary to 
“build up” M in S, W(M/S), also called the coupling 
work of M with S. Simple statistical arguments 
provide a connection between W(M/S) and a measur- 
able free energy change. It is not necessary to report 
all the details here. The conclusion is that the 
following expression may be accepted as a fairly good 

approximation to the solvation free energy: 

qrot,sqvib,s 
AGsol = W(WS) + RT In 

Here Qrot,g, qvib,g, qrot,s, qvib,s are the miCrOSCOpiC parti- 
tion functions for rotation and vibration of M, in gas 
phase and in solution; n M , g  and n M , s  are the numeral 
densities of M molecules;  AM,^ and  AM,^ are the 
momentum partition functions. There is an ad- 
ditional term, PAV, which may be neglected, its value 
being normally less than kcal/mol. This expres- 
sion is more general than the one we presented in 
1981,338 and later applied in other papers. Ben- 
Naim’s derivation is not limited to dilute solutions 
and also avoids certain assumptions about the struc- 
ture of the liquid state. The last term of eq 99 is the 
so called “liberation free energy” d i f f e r e n ~ e . ~ ~ ~ ? ~ ~ ~  The 
sum of the first two terms, i.e. the solvation free 
energy at equal numeral densities in gas phase and 
solution, is indicated by Ben-Naim with an asterisk: 
AG;,,. Notice that the usual thermodynamic rela- 
tionships also hold for AG;,,, in particular: 

(100) 

Nol = - A G : ~ ~  - TAS:,, 

The coupling work of M and S may be decomposed 
as follows: 

(101) 

We have already examined AGe1. AG,,, is a positive 
term, corresponding to the work spent in forming a 
suitable cavity in the liquid; AGdis is the dispersion 
contribution to the coupling work; AGrep is a repulsion 
term, assimilable, at  the microscopic level, to  the 
exchange-repulsion term of the perturbation theory 
for noncovalent interactions. In the following sec- 
tions we shall analyze the methods available for the 
computation of the different components of AG,,l. 

W(M/S) = AGel + AG,,, + AGdis + AG,,, 

B. The Cavitation Energy 
The introduction of a cavity formation energy term 

is a useful device to divide the evaluation of W(M/S) 
into separate and more manageable terms. As 
already said, AGcav corresponds to the work spent in 
forming, inside the liquid, a cavity of appropriate 
shape and volume, in the absence of solute-solvent 
interactions. In other words, during this hypothetical 
step the solute-solvent interactions are switched off. 
Once the cavity is formed, the other terms in W(M/ 
S) are evaluated by switching on again the interac- 
tions, for instance by a charging parameter method, 
which ensures the status of a free energy to the final 
result. 444 
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The concept of cavitation energy was introduced 
by Uhlig,445 following a suggestion of Susskind and 
K a ~ a r n o w s k i ~ ~ ~  and then refined by The 
approach was devised for, and later extensively 
applied to, the theory of solubility of gases into 
liquids. The literature on AGca, is influenced by this 
origin, and many tests and speculations concern the 
solvation of relatively inert gases into liquids of 
various nature and the related problem of the 
definition and evaluation of hydrophobic effects. It 
is not our aim to survey here the vast literature on 
these subjects, rich in debates opposing different 
views of the matter. We only remark that AGcav is 
but one of the components of AGsol, and an adequate 
treatment of all components is needed to draw firm 
conclusions from a comparison with experimental 
values. 

For the evaluation of AGca, several formulas are 
available, based on the shape and size of the solute 
and on different parameters of the solvent: (1) 
surface tension (Uhlig), (2) surface tension with 
microscopic corrections (Sinanoglu), (3) isothermal 
compressibility (Gogonea and Osawa), and (4) geo- 
metrical parameters of the solvent molecules (Reiss, 
Pierotti). We may add that simulation methods are 
able to give a direct insight of the process of formation 
of a cavity and on the effect it has on the surrounding 
solvent  molecule^.^^^-^^^ 

The first three techniques mentioned here follow 
the same philosophy of the continuum dielectric 
approach. In fact, they do not rely on a detailed 
description of the discrete solute and make use of 
experimental bulk parameters of the solvent, in 
analogy with the dielectric constant of the electro- 
static continuum model. The Reiss-Pierotti formu- 
las derive from a theory based on a discrete model of 
fluids (the scaled particle theory); the original dis- 
crete formulation of the theory is no longer evident 
in the expression of AGca,, which depends again on 
pure solvent parameters. 

1. Cavitation Energy from Surface Tension 
We begin with the approach proposed by Uhlig.445 

The cavitation energy is simply proportional to  the 
surface of the cavity, assumed spherical: 

AG,,, = 47cR2y (102) 

where r is the radius of the cavity and y the surface 
tension of the solvent. 

This formula has been applied in many cases, also 
for the evaluation of the free energy of transfer 
between different solvents. 

It is worth mentioning here a r e l a t i ~ n s h i p ~ ~ ~ , ~ ~ ~  
connecting the surface tension with the isothermal 
compressibility K and density 6 
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(103) 

in the normal liquid range. A0 is temperature 
independent and invariant for a large set of organic 
solvents (including H-bonded liquids); it assumes 
different values for diatomic liquids and for rare 
gases. To the best of our knowledge this relationship 
has not yet been exploited to get cavitation energies. 

A simple formula related to eq 102 has been 
recently proposed by Tufibn, Silla, and Pascual- 
A h ~ i r : ~ ~ ~  

AGcav = ySM - RT ln(1 - Vsns) (104) 

where SM is the surface area of the cavity, VS is the 
volume of a solvent molecule, and ns is the numeral 
density of the solvent. 

An empirical expression has been recently proposed 
by Simonson and Brunger:460 

(105) AGcav = C + CYPi 
i 

where Ai is the atomic accessible surface area, and 
C and yi are adjustable parameters. The quality of 
the fit is not significantly reduced when all the yi are 
reduced to a single value. 

2. Cavitation Energy from Surface Tension with 
Microscopic Corrections 

Some deficiencies of the preceding method have 
been interpreted as originating in the use of a 
macroscopic value of y which does not take into 
account the effects of curvature at the microscopic 
scale. The theory of surface tension for curved 
surfaces has been laid down by Tolman461)462 and 
successively refined for microscopic curvatures by 
Kirkwood and B u ~ P ~ ~ - ~ ~ ~  and 0 t h e 1 - s . ~ ~ ~ ) ~ ~ ~  The ver- 
sion most widely adopted is that given by Sinano- 
g1u469-473 within the context of a general treatment 
of molecular interactions in solutions, mainly based 
on a discrete representation of the liquid. 

The cavitation free energy is given by 

Here 2 is the cavity area (the formula has been 
developed for spherical cavities and then extended 
to  arbitrary shapes). Kfj(Vs/VM) is a correction fac- 
tor, characteristic of the solvent and depending on 
the ratio of the molecular volumes of S and M. It 
can be developed in the expression: 

(107) 

where kP,(l) is estimated from solubility data. Ac- 
tually Sinanoglu's formulation is more complex than 
this schematic overview; he also introduces separate 
microscopic factors kg and kt for the cavitation 
entropy and energy. As a consequence, different 
formulas can be found in the various papers referring 
to Sinanoglu's approach. 

A detailed worked-out example has been reported 
by Birnstock et a1.474 with application to the confor- 
mational enthalpy changes of several solutes. Re- 
vised versions of Sinanoglu's method have been 
proposed by Blaisten-Barojas et a1.475 and by Moura- 
Ramos et a1.,476-479 with several  application^.^^^,^^^ 

3. Cavitation Energy from lsothermal Compressibility 
Quite recently Gogonea and O s a ~ a ~ ~ ~ , ~ ~ ~  reconsid- 

ered a suggestion of Oakenfull and F e n w i ~ k ~ ~ ~  to 
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estimate A G c ,  through the relationship: 

Whence 

(108) 

(109) 
V c a v  

P T  
AGcav = - + constant 

Here PT is the isothermal compressibility and Vcav is 
the volume of the cavity (this formula contains an 
error of sign in ref 482). 

Gogonea and Osawa support their proposal with 
the results of molecular dymamics simulations of 
liquid water, published by Postma et al.450 The 
energy necessary to create a cavity in water cor- 
relates quite well (correlation coefficient 1.000) with 
VCav computed from the thermal radius of the cavity: 

AGCav = 0.O426Vc,, - 0.1173 (110) 

(energies in kcaymol, volumes in Hi3). The slope 
0.0426 is substantially different from the experimen- 
tal value of P T - ~  = 0.318. The surface tension and 
the compressibility formulas (without corrections) 
pick up different single aspects of the cavity forma- 
tion process; a more comprehensive approach is 
outlined in the next section. 

4. Cavitation and Scaled Particle Theory 
The formulation given by Pierotti483-485 is based on 

the scaled particle theory (SPT) of Reiss and co- 
already mentioned in the introduction as 

one of the cornerstones of the physical approach to 
solutions. In its original formulation the SPT reduces 
the fluid molecules to  hard spheres; the theory was 
later extended to rigid bodies with more complex 
shapes and recently applied486 to the evaluation of 

Pierotti adds an interaction energy term to evalu- 
ate the solubility of gases in liquids, with the as- 
sumption that there is no entropic contribution to the 
solute-solvent interaction. As to the cavitation free 
energy, it is expanded in powers of RMs, i.e. the radius 
of the sphere which excludes the centers of the 
solvent molecules (sum of the solute and solvent 
radii, R M ~  = RM + Rs): 

A G c a v .  

The coefficients ki are expressed in terms of some 
of the properties of the solvent (molecular radius Rs, 
numeral density ns) and of the solution (pressure P, 
temperature 2‘): 

4JrP K3 = 7 

with y = 4nRs3ns/3. The expression of AH,,, is 
deduced through the Helmholtz equation: 

which requires the knowledge of the thermal expan- 
sion coefficient a p  of the solvent. 

A modified expression of A G c a v ,  similar to  Pierotti’s 
and valid when the solvent is water, has been 
proposed by Stillinger, who incorporated in the theory 
also the radial distribution function of pure water and 
the experimental surface tension. 

5. Comparison of Cavitation Models 
The various expressions of A G c a v  and M c a v  have 

been used in many papers, giving rise to  diverging 
conclusions. The main reason is that A G c a v  is not an 
observable; an evaluation of the merits of an expres- 
sion for AGcav (as well as for AH,,, and AS,,,) cannot 
rely on direct comparisons with thermodynamic data. 
On the other hand, the results of computer simula- 
tions of real liquids are influenced by the quality of 
the intermolecular potential. 

An example of systematic analysis of thermody- 
namic data, comparing Pierotti’s and Sinanoglu’s 
cavitation free energies, has been presented by Abra- 
ham and N a ~ e h z a d e h ~ ~ ~  without definitive conclu- 
sions. As a general trend, Pierotti’s formula works 
fairly well for solvents of small size, even when they 
are polar, protic, or hydrogen bonded (methanol, 
water); the deficiencies of the approach are more 
evident for solvents with large and not spherical 
molecules (such as the series of n-alkanes and 1-al- 
cohols). The cavity, in Pierotti’s formulation, has a 
spherical shape; to  apply the same concepts to 
molecules described in terms of overlapping spheres, 
Claverie et al. lo2 proposed the following expression: 

where each sphere, with radius Ri, contributes with 
a weight depending on the portion of its surface 
which is exposed to the solvent (Ai). A similar 
formulation is used in our PCM implementation of 
Pierotti’s expressions. 

In Figure 6, parts a, b, and c, we report A G c a v ,  
A H c a v ,  and A S c a v  in water and cyclohexane, for a 
spherical solute, as functions of the cavity radius. The 
Oakenfull-Fenwick, Sinanoglu, and Pierotti formulas 
have been applied. The numerical parameters (7, PT, 
etc.) are experimental values; they have not been 
calibrated to reproduce thermodynamical data. It is 
evident that there is not agreement among the three 
methods; the most striking differences are found in 
the AS and AH values, rather than in AG, a common 
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Figure 6. Thermodynamical functions for the formation 
of a spherical cavity in water and cyclohexane, according 
to different models [(O-F) Oakenfull-Fenwick (S )  Sinano- 
glu; (P) Pierotti]: (a) AG; (b) m, (c) AS. 

feature when comparing thermodynamical quantities 
evaluated by means of different models. 

As already observed, AG,,, is not directly measur- 
able; estimates of AGcav are drawn from experimental 
data of various origins only on the basis of ad hoc 
assumptions. These assumptions are generally criti- 
cized, with the exception, perhaps, of those concern- 
ing the solubility of noble gases. In our opinion there 
is a need of systematic investigations of cavities of 
different shapes and sizes, based on MC or MD 
simulations with potentials made of well-defined and 
separate terms: repulsion, dispersion, and electro- 
static (if any). Another approach is to evaluate all 

terms in eq 101, in order to  compare total computed 
solvation free energies with experimental values. We 
shall see in section V.E that by using Pierotti's 
formulas it is possible to  obtain fair agreement in a 
number of cases, but it is not certain that this 
relatively good performance is not due to a compen- 
sation of errors. 

The strategy of introducing empirical calibration 
procedures, such as the one suggested by Gogonea 
and Osawa, or that implemented in the AMSOL 
package,323 surely reduces the errors, at least when 
the method is applied to solutes in their equilibrium 
geometry. (Notice that Cramer and T r ~ h l a r ~ l ~ - ~ l ~  
combine AGCav and AGdis in a unique term, param- 
etrized to reproduce AGs,,l of stable species.) How- 
ever, there is no guarantee that the application to 
other structures, e.g. transition states, yields results 
of comparable accuracy. 

C. The Dispersion Energy 
1. General Aspects 

Dispersion forces are ubiquitous (in contrast with 
other interactions that may or may not be active, 
depending on specific features of the molecular 
systems) and play an important role in many phe- 
nomena occurring in liquid system. 

Theoretical treatments of varying complexity have 
been proposed, ranging from quantum electrodynam- 
ics to  simple phenomenological formulations. The 
literature on this subject is quite abundant and the 
analysis of the dispersion interaction is an important 
chapter in all books dealing with molecular interac- 
tions. Among many excellent books and reviews, we 
quote here a few titles,488-494 reflecting in this choice 
our personal taste. 

Exhaustive formal analyses at the standard quan- 
tum mechanical time-independent level are available 
for bimolecular systems and for small clusters. Less 
detailed, for obvious reasons, are the treatments of 
larger systems, namely liquids and solutions. We do 
not need here a complete summary of such analyses; 
we shall recall the few points which are sufficient for 
our purposes. 

The dispersion terms cannot be treated within a 
simple Hartree-Fock description, as they are related 
to electron correlation effects. However, it is conve- 
nient to  remark some analogies between the disper- 
sion and the inductive interactions, which are in- 
cluded in a Hartree-Fock treatment. 

The interaction of a molecule M and of a nearby 
system S (molecule, supermolecule, portion of the 
splvent) is represented by a Hamiltonian term, 
ZMS, containing Coulombic attractions and repul- 
sions betweeq nuclei and electrons of M and S. We 
may replace KMS with its multipole expansion and 
retain for simplicity, at least in a qualitative discus- 
sion, only dipole terms. The molecule M may possess 
a permanent dipole (i.e., a nonvanishing mean value 
of the dipole operator, (Y~h.llplY~) in the absence of 
S )  and/or an induced dipole (i.e., a variation of 
(YMI~IYM), due to the electric field generated by S). 
The same holds for the system S. At sufficiently 
large M-S distances, and neglecting electron cor- 
relation, one may write the overall wave function as 
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Table 8. Evolution of Microscopic Theories for 
Dispersion Interactions 

Two Bodies 
two atoms in vacuo Slater and 

Kirk~ood,4~l Kirkwo0d,4~~ 
Muellelag9 

two spherical molecules HamakeldOO 
in vacuo (considering 
only pair interactions 
between constituent atoms) 

two spherical molecules Hamakersoo 
immersed in a solvent 

an assembly of molecules 
with bond-bond inter- 
actions and approximate 
spatial average 

Huron and Claverie501*502 

Three bodies 
three atoms in vacuo Axilrod and Teller,503 M ~ t o , ~ ~ *  

Bade and K i r k ~ o o d . ~ ~ ~ , ~ ~ ~  
Kestner and Sinanogluso7 

two atoms in solvent with 
third atom correction 

two spherical molecules in 
solution (pair interactions 
with third atom 
correction) 

Sinanoglusos 

Vilker et al.509 

a product of WM and Ws; in this case, the gMS 
contribution to the total energy is limited to electro- 
static and inductive terms, that is, the interactions 
of permanent and induced dipoles (multipoles). These 
are the forces which are responsible for the AGel 
contribution to the solvation free energy. Even at  
shorter M-S distances it is possible t o  discriminate 
such terms from others, with suitable energy decom- 
position  scheme^.^^,^^^ 

With a more complex form of the wave function, 
taking into account the electron correlation, another 
interaction term arises. Consider the dipole-dipole 
interaction of M and S, and subtract from the dipole 
operators (functions of the positions of the particles) 
their mean values (constants). In this way the 
electrostatic and induction terms are eliminated. 
What is left is an interaction operator, which does 
not average to zero if we consider that the electron 
density and dipole of M are influenced by the 
“instantaneous” positions of the electrons of S, and 
vice versa, i.e., if we allow for a correlation in the 
motions of the electrons of M and S. This is the origin 
of the dispersion energy term. 

The nonadditivity of electrostatic induction com- 
ponents is described by the quantum continuum 
models we have examined in the preceding sections. 
(The description of nonadditive electrostatic effects 
is still present in the continuum description of 
systems containing more than a solute molecule, as 
we shall discuss in section VI.D.) It  would be 
convenient to  have a computational model which 
introduces these nonlinear effects at  the same level 
of accuracy as for the electrostatic ones. 

The modeling of dispersion interactions in solution 
may be based either on a discrete molecular descrip- 
tion of the liquid or on a continuum dielectric model. 
Both approaches are based upon theories for disper- 
sion forces in simpler systems. We sketch in Table 
8 the basic steps which have led to the formulation 
of discrete models. 

In the last 15 years, there has been remarkable 
progress in the formal perturbation theory analysis 

of interactions involving few bodies. These improve- 
ments in our understanding of dispersion and disper- 
sion-related terms have not yet been transferred to 
models for liquids, as the necessary calculations are 
too expensive. The simple additive approach of 
H a m a k e F  is still used to support the interpretation 
of experimental results. 

The formal theory for the continuum dielectric 
approach was elaborated by Lifchitz in 19555101511 (see 
also Dzyaloshinsky et al.512). The theory is expressed 
in terms of quantum electrodynamics. The con- 
tinuum medium is characterized by its spectrum of 
complex dielectric frequencies. 

Simpler formulations have been later derived from 
this theory (for a review see Mahant~-Ninham~~O). 
We mention here the treatments proposed by 
McLachlan514 and by Linder,515-518 both rich in sug 
gestions for the implementation of efficient compu- 
tational models for solutions. 

McLachlan’s approach focuses on the dispersion 
forces acting on two molecules immersed in a fluid 
and avoids the use of a cavity. This model is thus 
less suited to treat AGdis contributions in the basic 
model (a solute at infinite dilution) we have consid- 
ered until now. Several points of McLachlan’s ap- 
proach could be exploited however to  model more 
complex material systems. 

Linder’s approach makes explicit use of a cavity 
and of the reaction field. A couple of methods now 
in use are based on this approach, generalizing with 
respect to the simple case of a dipolar solute into a 
spherical cavity sketched by Linder in his formula- 
tion of the theory. 

We have contrasted in these introductory pages the 
discrete and the continuum approach. In the practi- 
cal implementations we shall now consider, that the 
differences are not so definite. In fact in several 
models which may be considered as belonging to the 
discrete approach, a continuous distribution of sol- 
vent molecules is assumed; also in models derived 
from the continuum electrodynamic approach, strong 
simplifications lead to the neglect of some features 
of the original theory, such as the consideration of 
retardation effects. However, at  least one difference 
remains, namely that continuum-derived methods 
take somewhat into account nonadditive effects. We 
present in Table 9 the approaches we shall examine 
here. 

2. Pair-Potential Energy Approaches 

The discrete approaches are generally based on the 
use of pair potentials. The units composing a pair 
in the expression of a pair potential may be solute 
and solvent molecules, or suitable portions of them: 
atoms, bonds, chemical groups. 

It is convenient to  consider, in parallel, another 
potential of different physical origin, related to the 
quantum mechanical effects of mutual penetration 
of the electron charge distributions of the partners. 
This potential gives origin, in ground state molecules, 
to repulsive forces, therefore it will be called “repul- 
sion potential”. It is also sometimes called “exchange 
potential” because its main component in the per- 
turbation theory of intermolecular forces is related 
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Table 9. Some Methods To Compute AGdb 

Tomasi and Persico 

authors cavity method 
Huron-Claverieso 1972 general shape pair potential + continuum distribution 
van Duijnen et a1.365-373 1980 
Rinaldi et al.519 1986 regular reaction field 
Aguilar-Olivares del VallesZ0 1989 general shape reaction field 
F l o r i s - T ~ m a s i ~ ~ ~ - ~ ~ ~  1989 general shape pair potential + continuum distribution 
F rece r -Mie r t i i~~~~  1991 general shape pair potential 
C r a m e r - T r ~ h l a r ~ ~ ~ - ~ ~ ~  1991 general shape empirical 
G o g o n e a - O s a ~ a ~ ~ ~ , ~ ~ ~  1993 general shape empirical 

direct reaction field 

to the consideration of exchange operators among the 
electrons of the two partners. 

Dispersion potentials are conveniently expressed 
as a truncated asymptotic expansion in powers of llr 
(for the delicate formal problems connected with 
these expansions see, e.g., Jeziorski and K o ~ o s ~ ~ ~ ) .  We 
report here an expression we shall use later 

where the indexes m and s indicate subunits belong- 
ing to the molecules M and S respectively (as already 
said, in some cases m and s may coincide with M and 
S, respectively). We report here, for comparison, a 
similar expression for the repulsion term 

Often an alternative expression, more directly related 
to the physical interpretation of the interaction, is 
used 

Dispersion and repulsion potentials are collected in 
some methods into a single term: Um,(dis-rep) = 
Um&dis) + Vms(rep). 

The powers r i t  in expansion 115 are based on the 
formal theory of two-body interactions. The first 
term, df i ,  may be approximated in several ways, 
using e.g. the well-known London formula: 

or the more complex Slater-Kirkw~od~~~ or Mueller- 
K i r k ~ o o d ~ ~ ~ , ~ ~ ~  formulas. These formulas have been 
elaborated for atomic system-s, and in these systems 
the mean excitation energies I m  (_or the first ionization 
potential which often replaces I,) and the isotropic 
polarisabilities am have a clearly defined operational 
meaning. In applying such approximations of df:  
to  molecular systems we have to introduce important 
changes. The polarizabilities are no longer isotropic; 
they are tensorial quantities. The approximation still 
remains poor if the molecule contains several atoms 
and it is then necessary to partition the polarizable 
body into smaller subunits (“segments”), each char- 
acterized by its own polarizability. In the last case 
the quantities entering the definition of d:: (as well 
as of the other dgi coefficients) no longer have a 
counterpart in physical observables and must be 
computed with the ad hoc methods based on arbitrary 

partitions of the charge distribution. If the segmen- 
tation is extended to the last factor of the London 
function, even more arbitrary assumptions on the 
mean excitation energies must be introduced. The 
situation is still worse for the other dgi components. 

Moreover, the calculation of AGdis- rep  is rather 
complex and presents other problems. To illustrate 
these problems, which have been partly solved by 
making use of other approximations, we resume here 
one of the first attempts to  use molecule-molecule 
pair potentials (Huron and C1averie5O1). 

The reference molecule M is surrounded by a small 
cluster of solvent molecules S. The dispersion po- 
tential is limited to the dipole-dipole term, with the 
following expression: 

(119) 

whgre BM and Bs are the number of bonds of M and 
S, IM and IS are the molecular mean excitation 
energies, Tu, is the tensor: 

(120) 

and A, is the polarizability tensor of bond u, to be 
computed with ad hoc procedures (see Claverielo2). 
Recall that in eq 119 there is no dissection of the 
mean excitation energy factor. 

Another elegant expression for UMs(diS) has been 
proposed by Amos and C r i ~ p i n . ~ ~ ~  Although elegant 
this expression is hard to use for liquids and gives 
deceiving results. 

To improve the results Huron and Claverie have 
found it necessary to introduce in eq 119 an empirical 
factor x, the value of which should lead to numerical 
agreement between the molecule-molecule pair po- 
tential and a simpler expression based on the as- 
sumption that the interaction energy between two 
molecules may be reduced to the sum of independent 
atom - atom contributions. 527,528 

m s  

The atom-atom potentials are here used only to  
get a value for the calibration factor x .  The calcula- 
tion of A G d i s  uses the potentials of eq 119 in a cluster 
of molecules mimicking the first and second solvation 
shell and performing an approximate Boltzmann 
average by modifying position and orientation of the 
molecules belonging to the fist solvation shell.501r502,529 
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It is clear that this approach is unsatisfactory 
under many aspects. It has been in fact abandoned 
in favor of atom-atom isotropic potentials (eqs 115- 
117) with coefficients drawn from experimental data 
(see for example Pertsin and Kitaigorodsky528) or 
from calculations. (See also a recent systematic 
investigation by Miertiis and co -~orke r s ,5~~  which 
reconsider a set of approximations, reviewed at the 
end of this section.) 

The methods developed by Claverie and coworkers 
in Paris and by our group in Pisa adopt the atom- 
atom approximation. In both methods the average 
dispersion-repulsion energy may be written as 
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where S2 stands for the set of all the coordinates of 
the molecules, g(S2) is a distribution function and 
U(S2) is expressed as a sum of two-body U,,(dis-rep) 
potentials. Expression 122 may be rewritten in 
terms of continuous distribution functions Qms(rms): 

where N ,  is the number of atoms of type s present in 
each solvent molecule, ns is the macroscopic density 
of the solvent, and g,, is a correlation function 
depending on the relative position of s and m. The 
distribution of atoms m in the solute is known; the 
geometry of M is kept fixed. We have 

@dis-rep) = C C , f U m s ( r m s ) Q m s ( r m s )  drm: = (124) 
mEMseS 

The use of eq 117 instead of eq 116 introduces minor 
changes in the notation. 

The distribution functions gms(rms) are in general 
unknown. Experimental measurements, computer 
simulations, and integral equation methods (such as 
the RISM procedure) give estimates of angularly 
averaged distribution functions gms(rms)  and only 
indirect and partial information about their anisot- 
ropy. The various methods we are considering here 
differ in the evaluation of the gms(rms)  functions. 

The integrals appearing in eq 124 may be safely 
limited to rm, larger than a certain minimum value; 
around each center m there will be a region in which 
no s atoms can be found. We may consider these 
forbidden spaces as spheres with suitable radii RmS.  

(One can expect R,, to  be somehow related to the van 
der Waals radii of m and s.) The union of all the 
spheres, with s fured and m ranging over the whole 
set of M atoms, defines a cavity C, with surface 2,. 
We have thus recovered the concept of molecular 
cavity. 

When the set of the E, surfaces is known, we may 
replace the volume integrals in eq 124 with surface 
integrals. To do so we have to define auxiliary vector 
functions eL(rm,) such that 

(k) -k  G-@L(rms> = d,, rms gms(rm,) (125) 

Expression 124 is thus reduced to: 

where n, is the outer normal to  the surface 2, at 
position u. This integral may be evaluated numeri- 
cally with a suitable tessellation of the surface (see 
later). 

The explicit expressions of the e : ' s  are different 
in the several versions of the method we are here 
considering; however, they are always recast in a 
simpler form: 

(127) 

where an isotropic function f:: is introduced. 
In the several versions of Claverie's method502246,530 

the integrals of eq 124 are computed numerically 
using a Koborov grid531 (maximum number of points 
for each sphere defining C,, 610). In the versions of 
our PCM set of programs, the tessellation of the 
cavity is of the same type used to  compute AGei (see 
section III.D.4); the maximum number of points for 
each sphere defining C, is 60. 

The atom-atom isotropic functions gms(rms)  are 
replaced in the Claverie approach by calibration 
factors p,, and pms, respectively for the dispersion 
and the repulsion contributions; in this case the 
f::(r,,) functions assume a simple analytical form. 
The numerical values of the K,, factors are obtained 
in preliminary calculations in which an appropriate 
number of solvent molecules (90-150) are described 
as rigid spheres in a close packing. The K,, factors 
are not transferable; they must be reevaluated for 
each new couple of molecules; approximate expres- 
sions are however provided to get simpler computa- 
tional recipes.50 

A simpler formulation based on a calibration factor 
not depending on the solute has been proposed by 
Kihara and John;532 apparently this method has not 
found many applications. 

we discard 
the use of calibration factors, preferring to adopt 
explicit expressions for gms( rms) .  In the simplest 
version, the one we recommend for routine calcula- 
tions, the so-called "uniform approximation" is 
adopted. Each gms(rms) function is reduced to a step 
function: 

In the PCM computational 

The e: functions have in this case a simple ana- 
lytical expression: 

An alternative formula for is based on eq 117: 
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(130) 

(Note that in ref 522, this formula contains a couple 
of misprints.) 

As a test we have compared the AGdis-rep evaluated 
in the uniform approximation, with the results 
obtained using numerical gms(rms) functions; the latter 
were derived from RISM-HNC calculations, based on 
the same two-body of eqs 115 and 116, 
with the same d@) coefficients. In this case the 
evaluation of the At: functions is preceded by a 
numerical one-dimensional integration. This analy- 
sis also permits one to check (and essentially to 
confirm) the values of the R m ,  radii which define the 
cavity C,, previously based on van der Waals radii.521 
Similar unpublished analyses based on Monte Carlo 
derived gm, functions confirm the above reported 
conclusions. 

The coupling of continuum calculations with RISM 
and computer simulation approaches also gives in- 
formation about the last important methodological 
point we are going to discuss. 

The quantity we have computed is actually an 
internal energy. A well-known technique to get a free 
energy from an internal energy is based on the so- 
called charging process, previously discussed in sec- 
tion IV.A in connection with the electrostatic prob- 
lem. Let us recall it here briefly. The solute-solvent 
potential U(Q) is multiplied by a parameter A, rang- 
ing from 0 (no interaction) to 1 (full or unchanged 
interaction); gs(Q;A) is the distribution function for 
the attenuated potential AU(Q). The free energy 
change is given by the integral: 

AG = h1 Cu [jdQU(Q)g,(R;A)l (131) 

According to the picture given by the charging 
parameter method, a solvent reorganization process 
accompanies the progressive turning on of the inter- 
action. Equation 131 is quite general; G and U(Q) 
may be total values or partial contributions. In the 
latter case, g(Q;A) is the distribution resulting from 
a full interaction of some kind (for instance, cavita- 
tion and electrostatic) plus an attenuated interaction 
of some other kind (for instance, dispersion-repul- 
sion). Actually, we have adopted a partition of the 
charging process into three separate steps: cavita- 
tion, electrostatic, and dispersion-repulsion. The 
use of the SPT (Pierotti’s formulas) and of the 
classical electrostatic picture for the reaction field 
corresponds to integrations with suitable (and dis- 
tinct) charging parameters to  get AG,,, and AGe~. 

The description of the reorganization accompany- 
ing dispersion-repulsion charging processes presents 
some special problems, as Claverie and co-workers 
first pointed In their short analysis, they give 
a clear view of the situation, pointing out that the 
most delicate cases are those concerning nonpolar 
solutes, without giving however any suggestion for 
the solution of this problem. 

A set of isotropic gms(rme) functions, computed with 
the RISM-HNC method, with the same two-body 
potentials as above, but containing now an explicit 
charging parameter A, permits one to get, via the 
PCM pair dispersion procedure outlined above, a 
numerical solution of eq 131. The values found for 
a few hydrocarbons in water (and methanol) are quite 
encouraging. The integrand is almost constant, with 
a weak linear dependence on A. The approximation 

(132) 

introduces errors lower than 5% and decreasing with 
the size of the hydrocarbon. Moreover, the AGdis-rep 
values obtained in such a way are quite similar to  
the (Edis-rep) values obtained with the uniform ap- 
proximation, which already have, by definition, the 
status of a free energy. 

The continuum approach based on atomic pair- 
potential functions appears to be, especially in the 
PCM version, an efficient computational method, able 
to  yield reliable AGdis-rep at  least for closed-shell 
solutes. It is worth reporting some data about the 
dissection of this quantity into its k components (k 
= 6, 8, 10 dispersion terms, negative; k = 12 repul- 
sion term, positive). For a sample of 42 hydrocarbons 
in water we found that IAGrepI is in the average 15.8% 
of IAGdisI, with a standard deviation of 0.93. The 
three components of AG&, with k = 6,8,10 contribute 
to the total according to the following percent ratios, 
respectively; 90.01 It 0.32%, 8.60 f 0.26%, 1.38 f 
0.10%. The AGdis-rep values have a good linear 
correlation with the van der Waals surface, SM, and 
the volume VM of the hydrocarbons:522 

AG,.jis-rep = -0.03208 - 0.07678, (133) 
(R = 0.9959, u = 0.345 kcal/mol, n = 21) 

AGdisWrep = -1.26850 - 0.07469VM (134) 
(R = 0.9969, u = 0.302 kcal/mol, n = 21) 

Both surface and volume appear to  be good predictors 
of AGdis-rep for hydrocarbons in water (as well as in 
methanol and in cyclohexane), and in passing to 
larger globular hydrocarbons SM probably will be a 
better predictor, as other not fully analyzed tests 
indicate. Less abundant is the computational evi- 
dence we have for other solvents and for polar 
solutes, but the results should be comparable to those 
shown here. 

A last point which deserves mention is the quality 
of the atom-atom potentials. There are many sets 
of pair potentials available in the literature (space 
limitations prevent a survey). The computed AGdis-rep 
values are not insensitive to  the choice of the pair 
potential; attention should be paid to  a proper selec- 
tion of parameters. The AGdis-rep values reported 
above for hydrocarbons in water were computed with 
potentials supplied by Vigne-Maeder and C l a ~ e r i e , ~ ~ ~  
but other sets give similar results. 

It would be convenient, however, to reconsider the 
question of the pair potentials again. Pair potentials 
drawn from experimental data could describe, in 
principle, a portion of the nonadditive dispersion 
effects we mentioned at  the beginning of this section. 
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Table 10. Comparison of AGdis-rep Values (kcavmol) 
Obtained with Approximations A-E of Frecer et aL5” 
for a Set of Solutes in Water 

solute A B C D E 
CH4 -24.58 -8.56 -5.10 -7.05 -6 
CZH6 -34.35 -10.44 -6.47 -9.02 -8 
C3Hs -38.18 -11.48 -7.04 -9.98 -9 
C4H10 -39.91 -12.32 -7.60 -10.66 -10 
HzO -4.21 -4.62 -3.40 -4.45 -4 
coz -4.43 -6.47 -4.64 -6.13 -5 
HzCO -8.77 -6.71 -4.72 -6.95 -6 
NH3 -11.72 -6.40 -5.08 -6.71 -6 
HNCO -7.89 -7.92 -6.01 -7.94 -7 
CH30H -13.38 -7.65 -5.22 -7.12 -6 
CzH50H -21.40 -9.51 -6.32 -9.04 -8 
C3H70H -26.70 -11.64 -7.01 -9.95 -9 
CH3NHz -17.40 -7.97 -5.97 -8.18 -7 

A carefully planned application of the reaction field 
methods that we shall examine later could give an 
independent set of parameters with explicit inclusion 
of nonadditive effects. We have found this strategy 
quite effective for introducing nonadditive classical 
induction effects in two-body potentials to  be used 
in ion-water simulations,534 a subject that will be 
treated more in detail in section W.D. 

The discrete pair potential approach has been the 
subject of a recent effort by Miertiis and 
to collect a representative set of models in a coherent 
ladder of approximations. The analysis is limited to 
the dipole-dipole dispersion term, supplemented by 
a r-12 repulsion term for the solvent molecules of the 
first solvation layer. These authors define five levels 
of approximation, using: (A) molecule-molecule-type 
formulas, (B) atom(so1ute)-molecule formulas, (C) 
atom-atom formulas, (D) atom-atom-type formulas, 
with inclusion of specific mutual solute-solvent 
molecular orientations, and (E) a combination of 
approximation D, for the first shell, and approxima- 
tion C (rotationally averaged quantities) for the other 
shells. 

London-type formulas are used for all models, with 
parameters drawn from quantum mechanical calcu- 
lations according to methods detailed in ref 98. The 
solvent is modeled in layers (10 is the maximum 
number of layers considered in the calculations, but 
convergence is completely achieved within four lay- 
ers). Solvent packing numbers for solvent molecules 
(or atoms) in each solvation shell are introduced, with 
special algorithms to discriminate between accessible 
and sheltered positions of each atomic van der Waals 
surface.354 The five approaches have been coded and 
the program is operative. We report in Table 10 a 
small selection of the published results concerning 
water as solvent. 

Approximation A is quite poor and approximation 
B gives too negative values, especially for solvents 
other than water. Approximations C-E give results 
of comparable magnitude, which satisfy the expected 
trends for homologous series in different solvents. 
The values obtained with these approximations are 
comparable with those obtained using the PCM pair 
dispersion procedure (for hydrocarbons the best 
agreement is found with approximation C). 

3. Reaction Field Based Approaches 
A simple version of this approach is the direct 

reaction field model (DRF), implemented by van 

Duijnen and c o - w ~ r k e r s ; ~ ~ ~ - ~ ~ ~  we have already con- 
sidered the electrostatic DRF model in section IV.B.5. 

The method is based on a model in which a 
quantum mechanical solute interacts with a medium 
described as a collection of point-polarizable dipoles. 
The interaction term in the Hamiltonian gM = 
+ PRF is written as 

zl u PA 

where i a n d j  run over the particles of the solute, p 
and q over the external polarizable dipoles (see also 
section IV.B.5). F, is the field generated by particle 
i (electron or nucleus) at  point p .  The qq tensor gives 
the moment induced at  q by a field applied to point 
p ;  the nondiagonal terms p f q arise from the 
interaction between induced dipoles. 

In contrast with the reaction potential operator 
?‘A we have used in preceding sections, defined in 
terms of an expectation value, PRF is a linear 
operator embodying, in principle, induction as well 
as dispersion contributions. What is left after sub- 
tracting the classical induction (or polarization) 
terms, is considered a measure for dispersion inter- 
actions (in the dipole-dipole approximation). The 
dispersion term is here overestimated because this 
direct evaluation neglects the frequency dependence 
of polarizability, which implies a time lag in the 
induced dipole with respect to  the applied field. The 
overestimation of && may be put under the form of 
an upper bound which is a generalization of a similar 
upper bound for two spherical systems (the Alex- 
ander upper bound). According to the authors, a good 
guess for the correction factor should be near 2; they 
support this guess with tests on two H atoms and 
two harmonic oscillator models and with test calcula- 
tions on the water dimer. 

h g y d n  and J a n ~ e n ~ ~ ~  have tested the perfor- 
mances of the DRF method on a set of atom-atom 
systems. They found that the correction factor 
ranges between 2 and 15 and give some hints for the 
explanation of this apparently erratic behavior. I t  
must be considered that in van Duijnen’s idea the 
DRF is a simple method to get from Hartree-Fock 
calculations an estimate of the dispersion energy for 
large systems in solution. This being the goal, the 
approach may endure heavy empirical corrections if 
experience will suggest their introduction. 

The use of models based on the concept of a 
reaction field coupled to that of a cavity has been 
advocated, as said at the beginning of this section, 
by Linder.515-518 Linder worked out this model for 
the case of a polarizable point dipole in a spherical 
cavity. 

More realistic versions of Linder’s model have been 
elaborated by Rinaldi, Costa Cabral, and Rivai1519 
and by Aguilar and Olivares del Valle.520 The two 
approaches are inserted in the framework of the 
multipole expansion model of the Nancy group, and 
in the ASC model (in the PCM formulation), respec- 
tively. This makes a noticeable difference in the 
practical implementation and in calculations, but the 
formal elaboration is similar in the two cases, and 
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we may give here a unified sketch of the formalism, 
contrasting later the two realizations. 

The reduction of Linder's theory to a form suited 
for molecular calculations given by the two groups 
allows one to write an effective Hamiltonian of the 
type: 

The 8:, operator regards the classical electrostatic 
polarization terms and has here the same definition 
given in section 1I.A. We recall that it depends on 
the solute charge distribution @M and on the stgtic 
dielectric constant E O .  The term added here, e:,,, 
depends on @M and on the dielectric permittivity E,, 
the square of the optical refractive index extrapolated 
to infinite frequency. 

$Ais is formulated in the framework of the London 
approximation, that is, in terms of the mean excita- 
tion energies of the solvent and solute molecules, and 
o,f the solute multipole polarizability a. In addition, 
%his will also depend on the coefficients of the second 
rank the reaction field tensor g. Using a spherical 
tensor formalism, we have 

PPQ 

p = {ll,ml} 

q = {Z,,m,} 

-I, I m1 I 1, 

-1, I m, I 1, 

The G,, elements collect the transition energy factor 
and the components of the reaction field tensor g: 

0 I 1, I 00 

0 I 1, I 00 

The a,, are elements of the matrix 

where 

and 

D ,  = ( V2MKML) (141) 

with MK and ML denoting a multipole moment 
operator. 

The p - v element of ?':is, in the Hartree-Fock 
formulation, and referred to the basis set functions 
5, and &, may be written in the following form: 

R~&IMKlp)(alMqI~)) (142) I }  
R K ~  and R:K are elements of the intermediate ma- 

trices R = QD-' and Rf = (QD-')?. Note that the 
elements collected in the second summation in K 
depend on the density matrix elements Pno: 

- -  

The 2 operators coq-espond to the first summation 
of eq 142, and the operators to the second sum- 
mation: 

r i  

Ri&fdi ) lA)(o lMq( i ) )  (145) I 
This formulation singlesAout a term [the sum of the 
one electron operators @(i)l which depends on the 
electron density matrix. Both approaches, by the 
Nancy and the Badajoz groups, try to avoid, as much 
as possible, external parameters. So the components 
of a are computed with a variational procedure using 
the same basis set used for solvation processes. The 
Rivail-Cartier method536 has been used in both 
cases. The mean excitation energies are replaced by 
the first ionization potential in the Koopmans ap- 
proximation, computed with MINDOI3 wavefunctions 
in ref 519 and with a 6-31G basis set in ref 520. 

The differences between the Nancy and Badajoz 
approaches are related to the different general strat- 
egies of the solvation procedures followed by the two 
groups. Rivail and Rinaldi use multipolar expansions 
in elliptical cavities. The multipole approach implicit 
in eq 137 may be developed without changes. The 
calculations reported in ref 519 refer to  the use of 
the dipole term (I = 1) alone, but the extension to 
higher terps  is straightforward. In fact in ref 537, 
which is a preliminary communication, giving much 
more details than those here reported about the 
formal justification of the method, a study of the 
convergency of AGdls with I ranging from 1 to 4 is 
reported. (In this communication, AGdls is computed 
separately and not included in the Hamiltonian.) 

Also the Badajoz papers limit the treatment of 
polarizability to the dipole term. So a and the related 
Q and D matrices, eqs 140 and 141, are expressed 
in terms of dipole moment operators only. The 
method is however conceived as a part of the PCM 
procedure, therefore the next step is to define a new 
apparent charge surface distribution, ad,,, which 
derives from the fluctuating electric field and is 
computed with the same prescriptions as the elec- 
trostatic contribution (see section 1II.D). The first 
term, may be computed in two different ways: 
the first consists of following the same routes as in 
the calculation of qoo (see eq 37 and following), but 
applying a dielectric constant E,; the second consists 
of defining a continuous uniform distribution of 
atomic polarizability a(s) (s stays for the solvent 
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Also notice that repulsion contributions to AG are not 
taken into account: this limitation may be more or 
less important according to the strength of the 
attractive (electrostatic and/or dispersive) interac- 
tions. Improved continuum methods may be suitable 
for reference studies, i.e. to check and to ameliorate 
the empirical pair potential methods we have already 
examined and the surface-only procedures we shall 
examine in the'next section; the latter are much 
faster, but they require renewed calibrations and 
tests when applied to new classes of solvents. 

4. Cavity Surface- Dispersion Energy Relationships 
The idea of relating the dispersion energy to the 

surface of the cavity is quite appealing. This ap- 
proach may be connected to an older one (still in use 
and subject to recent improvements), that relates the 
total solvation free energy to the molecular sur- 

AGsol = x Y k E k  + (147) 

We have here partitioned the surface area 2 into 
group components, &. The factor ~k has been as- 
sociated, in the earlier works, to  the surface tension. 

We shall not introduce here an analysis of this 
chapter of the computational and modelistic theory 
of solvation thermodynamic functions, rich of inter- 
esting remarks and analyses, and useful when ap- 
plied to specific classes of solute-solvent systems. 

The analyses reported thus far make evident that 
expressions such as eq 147 should be more simply 
parametrized if limited to the dispersion energy 
AGdis. In principle it is possible to model also AG,1 
via surface contributions (see section IV.B.31, but the 
very nature of Coulombic interactions complicates the 
parametrization, each contribution depending on the 
nature of the vicinal groups and on the topography 
of the molecule. (The electric field acting on the 
surface element & also depends on molecular groups 
not directly linked to K ,  but near in space.) 

The dispersion forces decay as r-6; therefore, a 
partitioning such as that of eq 147 is less dependent 
on the nature and spatial distribution of the nearby 
solute groups. Numerical evidence for this relative 
unsensitivity to  the molecular remainder has been 
also provided by Floris et and by Bachs et al.90 

The description of AGdis in terms of contributions 
proportional to the area has been proposed by Still 
et a1.220 and employed by Cramer and 
and by Gogonea and O s a ~ a . ~ ~ ~ , ~ ~ ~  We shall give here 
a few additional details about the strategy followed 
by Cramer and Truhlar, because the corresponding 
AMSOL program323 is widely distributed and it will 
probably be used by some readers of this review. The 
hydration free energy is written as 

AGtO,(aq) = AG,,,(aq) + AGcDs(aq) (148) 

We are here interested in AGcDs(aq). With this index 
the authors emphasize that the term contains cavita- 
tion, dispersion, and solvent structural reorganiza- 
tion effects. Actually, as we shall see later, it 
contains other terms as well. The definition of AGcDs 
is 

face.206,207,447,538-555 

k 

Table 11. Solvation Energies (kcaymol) for Some 
Solutes in Water (6-31G Calculations) 
solute method 

HzO SCF 

NH3 SCF 
PTE3 

PTE3 

PTE3 

PTE3 

HF SCF 

CHI SCF 

AGela AGdia" AGel 4- AGdisa 

-9.14 -3.92 -13.06 
-8.58 -4.23 -12.82 
-5.60 -4.88 -10.48 
-5.41 -5.32 -10.73 

-10.43 -3.18 -13.62 
-9.72 -3.44 -13.16 
-0.57 -8.16 -8.73 
-0.30 -9.01 -9.30 

AGel + AGdi: 
-13.09 
-12.78 
-10.50 
-10.63 
-13.68 
-13.22 
-8.65 
-8.82 

" AGe1 and AGdis separately computed from the same @M, only 
.+Gel is included the effective Hamiltonian. Both ?{ and 
5di8 included in the effective Hamiltonian. 

atoms) and in applying the Green theorem as we 
have explained in connection with eq 125 and fol- 
lowing. It is interesting to note that the two proce- 
dures give numerical results in fairly good agree- 
ment. The use of a (Tdi, distribution spread on the 
solute cavity corresponds to the use of an infinite 
multipole expansion in the evaluation of @M. 

This generality is paid by the introduction of a 
third iterative cycle in the PCM procedure, this last 
being performed at  fixed @M and (T and affecting the 
G(i) component of eq 143. The iterative computa- 
tional machinery may be thus resumed.427 The 
interaction operators of the Hamiltonian 136 are 
supplemented with a couple of indexes: 

The outer cycle regards SCF calculatipns performed 
at  I and m fxed values; at each step $A and ?'Als are 
updnated. The second cycle regards the determination 
of gh ( I  varies, k and m are fixed) and does not 
involve SCF calculations; these two cycles correspond 
to the normal PCM iteration cycles (see 2ection 
IV.B.3). The third inner cycle determines ?'Als (m 
varies at given K,Z).  The modification induced by this 
cycle (no additional SCF calculations) mainly con- 
cerns the @(i) operator of eq 143. 

Olivares del Valle and Aguilar proceed a step 
further. They introduce in this algorithm the solute 
electron correlation calculated at  the PTE3 level (see 
section,JV.D), i.e. using third-order many-body per- 
turbation theory for the description of the wave 
function and of the ensuing molecular energy, while 
the interaction terms are computed at  the SCF level. 
We compare in Table 11 a few numerical values for 
small solutes in water (from ref 427). Apparently the 
introduction of TAls in the effective Hamiltonian 
does not produce great changes with respect to  the 
evaluation of AGdls as a separate and additive con- 
tribution (compare the last two columns). The in- 
troduction of electron correlation effects leads to  
changes of modest entity, ranging from -1 to  2%. 
Extrapolation of these values to larger systems and 
nonequilibrium geometries (e.g. reaction transition 
states) and to excited states is for the moment 
impossible. 

To conclude, both the Nancy and the Badajoz 
reaction field methods appear to give sensible results 
and the approach deserves further studies. In fact, 
many weak points could be corrected, for instance the 
use of orbital energies in the London-like formula. 
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Ak is the solvent-accessible surface area depending 
on atom k. It corresponds to  the portion of a sphere 
of radius ,& = RZdW + RidW exposed to  the solvent. In 
other words, it is the portion assigned to k of the 
surface 2 of the same cavity used in the PCM pair 
contribution expression for AGdis in its simplest 

The parameter Ok is interpreted as a 
surface tension but the Ok values are obtained by a 
fitting procedure, and the correspondence with ex- 
perimental surface tension values is lost. In the 
different versions of the AMSOL program there are 
different parameters to be simultaneously optimized 
with reference to experimental AGsoi values; namely 
three parameters, e:’, e:’, and qf’, related to the 
electrostatic contribution AGENp(aq), and the param- 
eter f& for A G ~ D ~ .  The limitation to  water as solvent 
simplifies the multiple regression procedure. The 
authors remark that it is effectively possible to  
separate the optimization of the Ok’S from the set of 
the other three parameters. There are now available 
Ok parameters fork  = H, C, N, 0, F, P, S, C1, Br, and 

We have reported the definition of AGCDS in the 
section concerning dispersion contributions because 
it seems to us that there is a tendency in some users 
of the AMSOL program to assimilate AG~Ds to 
dispersion contributions. Actually A G ~ D s  contains all 
the contributions not described by AGENP: two terms 
of opposite sign, namely AGcav + AGTep and AGdis, plus 
the rotational and vibrational contributions to  AGsol. 
Cramer and Truhlar clearly emphasize this point, 
with the additional proviso that vibrational contribu- 
tions (including zero-point energy differences) could 
be computed separately. As to these terms there is 
always an ambiguity in computational methods with 
parameters obtained by fitting experimental ener- 
gies. The tendency is now to supplement semiem- 
pirical molecular energies in vacuo with a separate 
evaluation of zero-point contributions (or vibrational 
contribution to  the free energy, when this last 
quantity is considered); Cramer and Truhlar foresee 
a similar evolution for semiempirical calculations in 
water. 

Gogonea and O s a ~ a ~ ~ ~ z ~ ~ ~  separate the cavitation 
and dispersion contributions. For the latter, an 
approach based on a continuum + pair contribution 
expression is considered as preferable, but for hy- 
drocarbons they use an empirical formula: 

1.318 

AGdis-rep = Cvdk + ‘0 
k 

(150) 

with parameters (k = H and C) obtained by fitting 
the values of 

AGdis-rep = AGsol - AGcav (151) 

The correlation coefficient is satisfactory; T = 0.9982. 
Bachs et al.90 apply the same formula, eq 137, with 

YO = 0, to  fit theoretical results computed with the 
pair potential method of Floris and Tomasi.521-523 

They obtain a good correlation for a set of 23 polar 
and nonpolar molecules in water. 

D. The Molecular Motion Energy Contributions 
Coming back to eq 99 we have to describe the other 

component of AGsol, namely: 

AGmm = AGsoI - W(M/S) = 

Let us start with the last term. h3 is the momen- 
tum partition function and n~ is the numeral density 
of M, in the gaseous and in the liquid state. We shall 
use as reference states the ideal gas at 1 mom 
concentration and the ideal solution at the same 
concentration; in this case the two densities are 
equal. If other standard states are used there will 
be an additional term, which is easy to compute. For 
example, if the standard states refer to an’ideal gas 
at  1 atm and to a hypothetical dilute ideal solution 
in which the mole fraction of M is unity, this 
additional term will be: RT ln(RTns), where ns is the 
number density of the solvent S. 

Ben-Naim442s443 calls the quantity -RT l n ( n ~ A ~ ~ )  
“liberation free energy” and interprets it as the 
additional amount of free energy (entropic contribu- 
tion) gained when M is allowed to wander into the 
entire volume at its disposal in the reference state. 
In our simple basic model (infinite isotropic solutions, 
no chemical associatioddissociation processes) this 
contribution is equal to  zero. Obviously there will 
be problems in which these assumptions are no more 
valid (e.g., the crossing of a membrane, a dissociation 
process). The translational contribution here con- 
sidered has been treated in the past by invoking 
further modelistic considerations. The translational 
contribution may be reduced to the logarithm of the 
ratio between the volumes available in the gas phase 
and in solution: RT ln(Vg,$Vsol). The question is 
whether the entire volume of the solvent is available 
for M. In crystals or glasses each molecule is 
confined into a specific site and motions are limited 
to a “free space” uM, with dimensions depending upon 
the characteristics of the interaction potential (for a 
water molecule in liquid water U M  has been estimated 
by NBmethy and S ~ h e r a g a ~ ~ ~  to be 0.26 cm3/mol). In 
the ideal gaseous phase there are no limitations to  
the motion. Because of this additional freedom gas 
molecules are said to  have a “communal entropy” not 
possessed by molecules in a rigid matrix. In solution 
a part or the whole of the communal entropy will be 
recovered.557 

This concept stimulated, in the past, several dis- 
cussions and proposals to compute the effective 
volume in s o l ~ t i o n . ~ ~ ~ - ~ ~ ~  We have adopted it with 
modelistic considerations, on the basis of the cell 
theory of liquids, in our first papers on this sub- 
j e ~ t . ~ ~ ~ , ~ ~ ~  The use of the communal entropy concept 
in the theory of liquids has been sharply criticized 
by Ben-Naim, who considers it “ ~ b s o l e t e ” . ~ ~  The 
approximation we are using here, of assimilating the 
free volume to the whole volume of the solution, has 
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Another problem involving molecular vibrations in 
solution regards the occurrence of specific interac- 
tions with solvent molecules, especially the formation 
of solute-solvent hydrogen bonds. The theory of 
these motions has been amply developed.577 We feel 
that the continuum approach is able to  give a sensible 
description of these effects (see section VI1.D on 
molecular vibrations) and for the moment we have 
used approximate routes based on continuum calcu- 
lations supplemented by supermolecule calculations. 
Further studies would improve the description. 

Note that we have included here the zero-point 
corrections, which could be computed separately 
when one is interested in the evaluation of Msol. 
From the practical point of view the only important 
contribution in the zero-point correction comes from 
high-frequency motions involved in solute-solvent 
specific interactions. 

The term RT In ( ~ ~ ~ t , g J q ~ , , ~ , ~ )  in expression 152 does 
not present problems as far as the gas-phase parti- 
tion function is concerned. The partition function in 
solution depends on the dynamics of rotation of M in 
solution. There will be effects due to the disruption 
of specific solute-solvent interactions. There is here 
a large space open for modelistic studies, which 
should be based on a coupling of molecular dynamics 
simulation and continuum model calculations. We 
have performed the first steps in this direction, but 
we have, for the moment, established only some 
bounds for the empirical barrier height hindering the 
rotation of M along the three axes of inertia. 

To conclude, it seems to us that the evaluation of 
the molecular motion contribution to AGsOl may be 
at  present performed with a reasonable degree of 
accuracy, for simple solutes of small and medium size 
having a relatively rigid molecular framework. Things 
actually are more complex when one considers other 
solutes, for example dimers Ml-Mz or trimers MI- 
Mz-M~, held together by relatively weak interactions. 

The reader surely has noted that in this subsection 
we have based our exposition almost exclusively on 
the elaboration performed by the Pisa group. We are 
in fact not aware of systematic elaborations of this 
subject performed by other groups, within the con- 
tinuum models. 

Table 12. Barrier Height for the Methyl Torsion and 
Related Contribution to the Molecular Free Energy, 
Computed in the Hindered Rotor Approximation 
(kcaYmo1) (4-316 SCF Calculations from Alagona et 

barrier height -RT In (qbrs) 

a1.419) 

molecule E =  1 E =  78.5 E =  1 E =  78.5 
N-methylformamide T 0.17 0.62 -1.10 -0.83 

C 0.67 0.80 -0.87 -0.83 
TS 1.15 1.34 -0.79 -0.76 

methyl formate T 0.71 1.09 -0.93 -0.82 
C 0.18 0.87 -1.03 -0.87 
TS 1.14 1.10 -0.79 -0.80 

been also implicitly assumed by Pierotti in the 
evaluation of AGcav. The controversy has continued 
until very recently. Sharp et al.1969566 make use of 
the volume entropy concept in their work on the 
hydrophobic effect, which is based on a modification 
of the Flory-Huggins As a test case, 
they consider AGso] of a set of alkanes in water. 
Giesen, Cramer, and Truhlar, in contrast, find a 
better agreement using the simple ideal solution 
theory; the set of alkanes they consider is somewhat 
more extended, but also the van der Waals radii 
employed to  calculate molecular surfaces and vol- 
umes are different. The application of Flory-Hug- 
gins theory to dilute solutions of small molecules has 
been criticized on theoretical grounds also by Ben- 
Naim and Mazo574 and by Abraham and Sakel- 
l a r i ~ u . ” ~  

The contribution related to vibrational degrees of 
freedom presents some problems of different nature. 
The evaluation of ln(q~bJ is now generally performed 
using ab initio calculations. Current computational 
packages (e.g. GAUSSIAN299) give the frequencies in 
the harmonic approximation. This approximation is 
not sufficient for large amplitude-slow frequency 
modes, which must be treated separately. We shall 
discuss in another section the evaluation of molecular 
vibrations in the continuum model. We may antici- 
pate here that a reliable computerized method to get 
harmonic frequencies in solution is not yet available. 

When only the ratio ln(qvih,gJqvib,s) is considered, we 
may note that in most cases, for medium-sized 
molecules the solvent effect is almost negligible. The 
solvent effect may be important in large amplitude- 
slow frequency vibrational modes. The computation 
of these contributions may be performed in parallel 
with the corresponding one in vacuo, thus reducing 
the effect of some approximations (the definition of 
the normal coordinate for a mode of this kind does 
not imply a simple route for the calculation of the 
corresponding frequency). We report in Table 12 the 
barrier height for the methyl-hindered rotation and 
the corresponding contribution to AG in N-methyl- 
formamide (MFA) and methyl formate (MF) in the 
trans (T) and cis (C) conformations and at  the 
transition state (TS) for the T-C conversion, com- 
puted in vacuo and in water solution,419 with the 
hindered rotor a p p r ~ x i m a t i o n . ~ ~ ~  The change in the 
energy barrier is sharp in some cases, but the effect 
on the vibrational contribution to AGsol is small. 

Some of the couplings among modes involving large 
amplitude motions will be surely different in vacuo 
and in solution, because of specific solvation effects. 
This problem requires further investigation. 

E. Solvation Free Energy of Some Simple 
Solutes. Some Conclusions 

We have examined the methods today available to 
compute all the elements of AGsol detailed in eqs 99 
and 101. We may now try to  draw some tentative 
conclusions from the numerical evidence at  our 
disposal. 

We report in Table 13 a set of L\Gsol values 
computed with the standard procedure (AGel at the 
6-31G** SCF level, AGCav with the Pierotti formula, 
AGdis-rep with the PCM continuum pair potential 
approach in the uniform approximation, AGmm with 
the routes given in section V.D) drawn from ref 66. 
In the same table we also report the corresponding 
AGel values. (Unfortunately other data, including 
optimal geometries and the separate values of AGcav 
and AGdis-rep have been lost in the interim.) 

The agreement between computed and experimen- 
tal AGsOl values is quite good. Note that no calibra- 
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Table 13. Comparison of Experimental Solvation 
Values of Some Esters (Solvent Water, T = 298.15 K, 
Values in kcaymol) with Computed Values and with 
AGel Values (SCF Calculations, 6-31G** Basis Set)88 

solute AGaol(expY AGaol(calc) AGel 

Tomasi and Persico 

acetic acid methyl ester -3.31 -3.75 
acetic acid ethyl ester -3.09 -3.51 
propanoic acid methyl ester -2.93 -3.34 
acetic acid propyl ester -2.85 -3.25 
butanoic acid methyl ester -2.83 -3.22 
propanoic acid ethyl ester -2.80 -3.21 
formic acid methyl ester -2.78 -3.18 
acetic acid l-methylethyl ester -2.64 -3.03 
formic acid ethyl ester -2.64 -3.02 
acetic acid butyl ester -2.55 -2.96 
formic acid propyl ester -2.48 -2.88 
propanoic acid propyl ester -2.45 -2.85 
acetic acid 2-methylpropyl ester -2.37 -2.77 
formic acid 2-methylpropyl ester -2.21 -2.58 
formic acid 2-methylbutyl ester -2.13 -2.52 
formic acid l-methylethyl ester -2.02 -2.43 

a Experimental values from Cabani et al.324 

-8.42 
-8.16 
-8.00 
-7.86 
-7.90 
-7.80 
-7.82 
-7.66 
-7.64 
-7.55 
-7.50 
-7.50 
-7.37 
-7.16 
-7.10 
-7.04 

tion and/or scaling factors have been introduced. (The 
occurrence of casual compensation among errors of 
different origin is of course possible.) 

The correlation is given by the following linear 
relationship: 

AG,,,(exp) = 1.03AG,,,(calc) + 0.33 kcaVmol 
r = 0.999 (153) 

where r is the regression coefficient. The correlation 
between AG,,l(exp) and AGe1 is of the same quality: 

AGSol(exp) = 1.09AGe1 - 4.78 kcal/mol 
r = 0.998 (154) 

AGel is in this case a good predictor of AG,,l(calc): 

AG,,,(calc) = 1.06AGe, - 4.44 kcal/mol 
r = 0.998 (155) 

In passing to other sets of solutes of homogeneous 
nature we have found analogous correlations between 
AG,,l(exp) and AG,,l(calc), with some differences in 
the intercept, but with slopes close to  unity and r > 
0.9. The number of compounds in each chemical 
family for which reliable AG,,l(exp) values are avail- 
able is in general small, and these correlations are 
of limited statistical weight. Correlations of similar 
quality have been also obtained for a more limited 
number of solutes in nonpolar solvents. 

The correlation between AG,,l and AGe1 seems to 
hold when extended to a heterogeneous set of polar 
molecules. We have drawn from our files calculations 
regarding 102 polar molecules (including polyfunc- 
tional molecules, heterocycles, and aromatic com- 
pounds) in water. The calculations have been per- 
formed over the years, and the specimen is not 
uniform, especially as to  the basis set. We are thus 
compelled to limit the correlation to AG,,l(calc) 
values: 

AG,,,(calc) = 0.91AGel - 5.09 kcaVmol 
r = 0.90 (156) 

When the examination is extended to nonpolar 
solutes in water, and to nonpolar solvents, the 

correlation between AG,,l and AGe1 fails. There is 
however a good Correlation between AG,,l and W(W 

Continuum methods compare well with molecular 
dynamics free energy perturbation methods (MD- 
FEP). A comparison has been performed by Orozco, 
Jorgensen, and L ~ q u e , ~ ~ ~  using 6-31G" SCF wave 
functions in the PCM calculations, and standard pair 
potentials for the MD. The PCM solvation free 
energies included cavitation, dispersion, and repul- 
sion terms. The average error for AGhyd over a set 
of eight neutral solutes is 1.5 kcaVmol for MG-FEP 
and 0.8 kcal/mol for PCM. For another set of 13 
solutes, accurate Monte Carlo calculations yield an 
average error of 1.1 kcaVm01.~~~ 

We may thus tentatively suppose that all the 
efforts required to better compute the AGmm contri- 
butions, eq 152, are not necessary if the goal is to 
get an appreciation of AGsol. Reasonable estimates 
for rigid polar solutes in water could be obtained from 
AGel with an appropriate scaling. The AGe1 values 
depend on the basis set, and we have noted that the 
correlation between AG,,l(exp) and AGe1 improves in 
passing to larger basis sets. When AGcav and AGdis-rep 
are added, an empirical scaling could be also applied 
to values referred to nonpolar solvents and to hydro- 
carbons in polar solvents. 

These (provisional) conclusions drawn from ab 
initio PCM calculations justify the expectation that 
simpler methods including parametrization and/or 
scaling may give good estimates of AGsol without 
including the AG,, term, which is harder to evalu- 
ate. 

Cramer and Truhlar have published a detailed 
report318 of the performances of the AMSOL model 
in three different versions, AM1-SMla, AM1-SM2, 
and PM3-SM3. For the 117 neutral polar solutes 
they have used in their calibration procedure (the 
calibration set also includes 33 hydrocarbons and 28 
ions) we found the following correlations: 

AG,,,(exp) = 0.901AG,,,(SM2) - 0.017 kcaVmol 

AG,,,(exp) = 0.882AGsOl(SM3) - 0.117 kcal/mol 

S) = AGe1 + AGcav + AGdis-rep. 

r = 0.876 (157) 

r = 0.853 (158) 

The same definition of parameters and the same 
strategy of optimization has been used in the two 
cases, and the differences are only due to the internal 
parameters of the AM1 and PM3 semiempirical 
H a m i l t o n i a n ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  The linear regression between 
experimental solvation values and AGENP, computed 
with the SM2 and SM3 sets of parameters for the 
same set of 117 solutes, yields 

AGSol(exp) = 0.330AGEN,(SM2) - 0.79 kcaVmol 

AGSol(exp) = 0.234AGEm(SM3) - 0.87 kcaVmol 
r = 0.399 (160) 

At least a loose correlation between hG,,l(exp) and 
AGENP (or AGe1, in our terminology) is expected for 
polar solutes in water. Apparently, this correlation 
is lost during the calibration of the AMSOL param- 

r = 0.615 (159) 
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Table 15. Thermodynamical Properties for the 
Chemical Processes Involving Tautomeric Changes 
between the Neutral and Zwitterionic Forms of 
Glycine (kcaymol) 

(NT)aq- (ZWIaq (NTIgae 4 (ZWIgaa 
computeda experimental* computedC experimental' 

Table 14. Linear Regression Parameters for Model 
Predictions against Experimental AGVd Values 

no. of intercept 
model authors points slope (kcaymol) r 
SASA Ooi et al.551 26 0.9526 -0.041 0.977 
GB/SA Still et al.z20 21 1.0379 -0.091 0.955 
FDPB Jean-Charles 14 0.7246 -0.770 0.813 

SM2 Cramerand 49 0.9543 -0.001 0.975 
et al.581 

T r ~ h l a r ~ * ~  

eters; in fact, the parametrization has considered the 
experimental AGsOl values, rather than their separate 
components, which have no experimental counter- 
parts. A reasonable explanation for the poor AG,,l/ 
AGENP correlation calls on the use of Mulliken 
charges, which do not reproduce the molecular elec- 
trostatic potential with a sufficient accuracy. The 
fact that A G N ~  cannot be used alone for neutral polar 
molecules is not extremely significant; in fact this 
method, as well as other semiempirical methods, is 
addressed to the evaluation of a specific quantity, 
AG,,l in this case, and not of its separate components. 
To validate Cramer-Truhlar's method one should 
examine the results of linear regression between 
experiment and theory for compounds not included 
in the calibration set. The data are unfortunately 
scarce, but for a set of seven neutral compounds318 
we found quite a good regression coefficient: r(SM2) 
= 0.965. 

In a more recent review Cramer and T r ~ h l a r ~ ~ ~  
compare linear regressions for AGsol obtained with 
AMSOL and other semiempirical methods. We draw 
from their analysis the data reported in Table 14. 
Here the set of solutes also includes nonpolar mol- 
ecules. More details can be found in ref 579. We may 
conclude this overview by reporting our impression 
that the objective of predicting AGhyd values for 
molecules in their equilibrium geometry with com- 
putationally inexpensive methods is almost reached. 
Further refinements undoubtely will increase the 
confidence degree in the calculation of a quantity so 
hard to derive from experiments. 

We have not considered in this review a new 
semiempirical procedure proposed by Hehre and 
included in the Spartan program.580 We are obliged 
to the courtesy of Professor H.-J. Hofmann, who has 
given us some information about this procedure. The 
program is quite fast, with results in some cases 
comparable to  AMSOL, but with some problems, for 
instance in the determination of tautomeric equilib- 
ria. 

VI, Chemical Applications 
As we pointed out in the Introduction, this review 

is mainly addressing the examination of method- 
ological aspects. For this reason we shall not con- 
sider in exhaustive detail the wealth of chemical 
applications, rapidly increasing in number and va- 
riety. 

In several cases the application is accompanied by 
some methodological innovation, but it would be 
difficult to  single out these aspects without giving a 
broader view of the problems for which they have 
been elaborated. We shall limit ourselves to  a few 

AG -7.2 -7.7 -16.5 - 
AH 
-TAS 2.4 2.2 3.0 

0 The values are here modified with respect to  the original 
r e fe rence~~~ ,5*~  by inclusion of dispersion and thermal contri- 
butions. Habefield, P. J.  Chem. Educ. 1980,97,346. Gatkey, 
J. S.; Pierce, R. C.; Friedman, L. J .  Am. Chem. SOC. 1977,99, 
4293. 

-9.6 -9.9 -19.5 -19.2 - 

themes, emphasizing the general aspects, rather than 
the specific chemical interest of the results. 

The themes we have selected are as follows: (A) 
equilibria in chemical reactions, (B) reaction mecha- 
nisms, (C) molecular observables, and (D) use of 
continuum models in computer simulations. 

A. Chemical Equilibria 
The first aspect of interest in the study of chemical 

reactions regards the chemical equilibrium condi- 
tions. The evaluation of solvent effects on a chemical 
equilibrium might be more reliable than the deter- 
mination of absolute solvation energies because some 
cancellation of errors should occur. This is actually 
the case for several classes of reactions which have 
been extensively studied; some examples, regarding 
the AMSOL method, can be found in the two re- 
v i e w ~ ~ ~ ~ , ~ ~ ~  and other papers327-579 by Cramer and 
Truhlar; analogous results hold for other systems. 

The most extensively studied equilibria regard 
tautomeric processes, isomerizations, acid-base equi- 
libria, and condensation reactions. 

Even in this set of simple reactions there are cases 
in which differential solvent effects play an important 
role. The examination of these cases sheds more 
light on the features of solvation and may be helpful 
in improving the computational procedures. As an 
example we quote one of the first chemical equilibria 
studied with adequate tools, i.e. the equilibrium 
between neutral (NT) and zwitterionic (ZW) forms 
of glycine in water (Bonaccorsi et a1.932582). To com- 
pute free energy and enthalpy changes for this 
tautomerization reaction, we have found it necessary 
to modify the definition of the cavity around the two 
polar heads of the ZW form: H3N+-CH2-COO-. This 
effort showed the way to subsequent cavity modeling 
for charged solutes. We report in Table 15 the values 
for the (NT),, - (ZW),, process, as well as for the 
(NT),, - (ZW),, process, compared with experimen- 
tal data. 

An accurate comparison of experimental and com- 
puted trends of AG and AH values for sets of related 
reactions surely will bring important refinements in 
the solvation models. Analogous considerations hold 
for the selection of the quantum level necessary for 
a reliable description of the thermodynamics of 
reactions. We limit ourselves to a simple example, 
again, drawn from the studies of Silla's group in 

concerning the protonation of organic 
solutes. The inversion of the relative basicities of 
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amines and alcohols in solution, with respect to the 
gas-phase values, can be easily interpreted only by 
applying an appropriate model to  describe solvent 
effects (the PCM in this example) with wave func- 
tions of a good level of accuracy. On this topic see 
also Rguini et al.164 

More experience gained in similar studies on other 
reactions may lead to improve a computational 
strategy valid also for other chemical applications. 

Phase-transfer processes provide another example 
of chemical equilibria, characterized by AG values of 
direct chemical (and biochemical) interest, that may 
also be used as a guide to  improve the models. The 
most expedient way to use AGtransf values in practical 
applications (for instance, to  predict the properties 
of molecules as potential drugs) probably exists in 
fitting the computed solvation energies with empiri- 
cal relationships, as proposed e.g. by MiertuB and 
M ~ r a v e k . ~ ~ ~  We have already quoted our exploitation 
of AGtransf calculations to get indirect clues on the 
more convenient values for the factor f~ modifying 
the van der Waals radii RK in the definition of 
molecular cavities.g1 Another analysis of AGtransf 
results has been recently considered by Silla’s 
they develop two expressions of AGtransf based on 
statistical mechanics, and relate them to Ben-Naim’s 
f o r m u l a t i ~ n . ~ ~  This elaboration allows a better 
understanding of hydrophobic effects and justifies the 
application of surface-only formulas in calculating the 
solubility of  hydrocarbon^;^^^^^^^^^^^ the large amount 
of literature on this subject deserves a careful analy- 
sis that we cannot do here. 

The recent study of Sakurai’s group on the decar- 
boxylation reaction catalyzed by ~yclodextrins~~ shows 
in a different way how continuum models may be 
modified and adapted to describe the more challeng- 
ing problems of anisotropic media. The attention is 
here focused on the activation energy, and the 
modelistic considerations are aimed at the description 
of the dielectric properties of reaction centers in the 
enzyme, but the approach could be also exploited for 
equilibrium properties. 

B. Reaction Mechanisms 
The study of reaction mechanisms is one of the 

more challenging problems faced by interpretative 
theoretical chemistry. A connected problem is to  
describe the reaction processes with details and 
reliability sufficient to derive quantitative informa- 
tion of chemical interest, such as the reaction rate. 

There are several clever shortcuts that enable to  
provide useful information, without much effort, 
about the two aspects outlined above. We shall follow 
however the most systematic approach, based on the 
study of the properties of the energy hypersurface, 
with the aim of stressing analogies and differences 
with the corresponding studies in vacuo. 

The energy hypersurface E(Q) in vacuo [or, better, 
the energy hypersurfaces E,(Q)I defined in the space 
{Q} of the nuclear coordinates has its counterpart 
in the G(Q) surface in solution. The formal analogy 
between the two functions has been highlighted 
many times, see e.g. Laidler and P ~ l a n y i ~ ~ ~  and 
Tomasi and Bonacc~rs i .~~  There are however some 
differences which deserve a few comments. 

Let us identify G(Q) with E(Q) + W(M/S) (see eq 
99); it is then a free energy function, from which the 
translational, rotational, and vibrational contribu- 
tions, including the zero point energy, have been 
omitted. In this sense, for a solute G(Q) has the same 
status as E(Q) for a free molecule. However, G(Q) 
depends on the temperature through the solvent 
properties: the dielectric constant, which enters the 
AGel component, the surface tension or other con- 
stants for AGCa,, and so on. In most studies per- 
formed up to now AG,, and AGdis-rep have been 
neglected; in many cases these terms exhibit small 
changes in the portion of the {Q} space of interest 
for a reaction, but it is safer to  use the whole G(Q) 
function. 

In many chemical reactions, G also depends upon 
the position and the orientation of the solute in the 
collective material system. We shall examine some 
cases when dealing with anisotropic systems. The 
situation is not different from that found in passing 
from systems in vacuo without influence of external 
fields to  models in which directing external fields are 
active. 

To describe the portion of the G(Q) surface of 
interest for a generic reaction we need a solvation 
method able to  treat two or more solutes separated 
by the solvent, otherwise applications would be 
limited to isomerizations. This point will be consid- 
ered in section VII. When a method to  compute G(Q) 
functions is available, we may proceed as in vacuo, 
limiting the study to the determination of the critical 
points (minima and saddle points) of the reaction 
coordinate and of the corresponding energy profile; 
larger portions of G(Q) are needed for a dynamical 
study of the reaction. The dynamics of reactions in 
solution presents additional problems which will be 
analyzed in section VII. 

The static solvent effects we are considering here 
influence the geometrical and energetic data ex- 
tracted from the G(Q) surface. To get an interpreta- 
tion of the reaction mechanism, these results must 
be analyzed by tools selected in the large panoply of 
methods elaborated by theoretical chemists. 

Classical solvation methods are of little use for the 
determination of the geometrical and energetic fea- 
tures of reactions. A preliminary description of these 
features may be obtained by resorting to semiem- 
pirical methods, which are however of little reliability 
for the analysis of the electronic effects. A complete 
and reliable analysis must be based on ab initio 
calculations. 

The experience drawn from the analysis of many 
reactions is often quite useful to facilitate the inter- 
pretation of a new mechanism. A few basic effects, 
combined in several ways, give rise to  the complexity 
of real chemical problems. The confidence gained in 
the interpretation of chemical reactions in vacuo may 
lead however to significant errors when directly 
applied to reactions in solution. The interaction 
between two reactants always replaces solute- 
solvent interactions, often of similar nature, and the 
reaction is ruled by a subtle balance that must be 
carefully appreciated. 

An example is given by the symmetric s N 2  reac- 
tions X- + H3CX - XCH3 + X- which exhibit 
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acetamide, N-methylformamide, and N-methylaceta- 
mide dimers.606 

Let us now move to the heart of the reaction, ie. 
the region of { Q }  where bonds are broken and 
formed. The effect of the solvent may be seen as a 
deformation of the energy hypersurfaces, with changes 
in the topology and topography of the crossing 
regions, and changes in the topography of the single 
surfaces. The surface crossing problems have not yet 
been studied in a significant number of cases, and 
also our knowledge of single surface problems is 
limited. 

A topological deformation of the surface may 
represent an important change in the reaction mecha- 
nism; a recent example is given by the study of Tuii6n 
et al. on the transition structures of Friedel-Craft 
reactions.607 Another example is given by the first 
reaction studied with the PCM approach: the reduc- 
tion of a carbonyl group by LiBH4.608 The structure 
of the transition state leads to  the formulation of a 
mechanism different from that found at  the same 
computational level in vacuo.338 

The attention is thus far concentrated on reactions 
with a simple mechanism, for example proton trans- 
fer reactions, of the type AH + B * A- + HBt. We 
report a short and not complete list of studies mainly 
addressed at bringing out cases in which the solvent 
shifts the balance from reactants to  products, or vice 
versa.55,270,277,362,610-616 The energy profile (often the 
results are presented as a one-dimensional cut) must 
be determined with a good accuracy, because solvent- 
induced distorsions may be of a lesser extent than 
artifacts due to the insufficiency of the computational 
level, the shape of the cavity or the geometry opti- 
mization. 

In many reactions one or a few solvent molecules 
play an active role. In such cases the necessary 
number of solvent molecules must be included in the 
“solute” system, with a corresponding enlargement 
of the { Q }  space. In a recent a technique 
has been proposed to distinguish general solvent 
effects from specific catalytic effects. 

The last example leads us to consider another 
related subject. The electronic wave function ob- 
tained with continuum quantum methods is a good 
source of information to interpret reaction mecha- 
nisms in solution. Theoretical chemistry has made 
available a large set of methods, based on the 
partitioning of the em charge distribution into sub- 
units and on the elaboration of suitable indices.235 
Among these indices we quote the atomic popula- 
tions, obtained with M u l l i k e n ’ ~ , ~ ~ ~  Bader’s,618 and 
Weinhold’s619 procedures, the MO energy differ- 
ences,620 and the electrostatic fields exerted by local 

The experience of solvent effects on these indices 
is rapidly accumulating, and other indices, specific 
for solution problems, are being devised. Among the 
latter we quote indices based on the value of the 
reaction field potential Q, in specific regions of the 
solute. A wealth of information is enclosed here, 
which may be used directly or to  explain the solvent 
effect on other indices, such as atomic charges, 
electrostatic fields and MO energies.419 The exami- 
nation of the Q, and VQ, values, now displayed in a 

s~b~nits.410,621,622 

important differences in the energy profile in vacuo 
and in solution. Monte Carlo simulations first,591,592 
integral equation,41 molecular dynamics,593 free en- 
ergy perturbation,594 and PCM continuum calcula- 
tions later5957596 have provided the first examples of 
known reaction profiles in solution successfully re- 
produced by calculation. When comparing the two 
energy profiles, one finds that more than one-half of 
the energy barrier present in solution is due to 
differential effects acting at the stage of close contact 
between reactants, when local solute-solvent inter- 
actions are replaced by interactions between reac- 
tants. The same effects are presents in other reac- 
tions, even when blurred by other more evident 
solvent 

For this reason we have considered it convenient 
to reformulate the Kitaura and Morokuma88 energy 
decomposition for two molecules A and B interacting 
in solution.599 The A-B noncovalent interaction is 
plagued by basis set superposition errors (BSSE), 
which are minimized with suitable basis  et^.^^^-^^^ 
The study of relatively large molecular systems with 
such basis sets is computationally very demanding. 
A reasonable correction of BSSE with standard bases 
is given by the counterpoise (CP) which 
we have extended to the separate terms of the 
Kitaura and Morokuma decompo~it ion.~~~ 

To use the approach of ref 495 in solution we have 
introduced a “partial desolvation” term in the expres- 
sion of G e 1 ( R ~ ) ,  related to the presence of solute- 
solvent interactions preceding the close contact be- 
tween A and B. An extension of the CP-corrected 
decomposition analysis495 to MP2 and MP3 wave 
functions in vacuo as well as in solution is now under 
elaboration (Cammi and Tomasi, in progress). 

A sensible estimate of the simultaneous effects due 
to noncovalent A-B interactions and to the reaction 
field (obviously one of the two partners A-B may be 
a solvent molecule) may be obtained also by studying 
the effects of external fields on the A-B interac- 
t i o n ~ , ~ ~ ~  an approach we have found very useful to  
interpret the initial steps of reactions in solution. In 
this field the application (and extension) of recent 
techniques for the evaluation and the analysis of 
noncovalent interactions in supermolecular systems 
could be an important aid in understanding chem- 
istry in solution. 

Another point that may be related to the first steps 
of a reaction in solution is a full account of the free 
energy for solute aggregations. We have expressed 
our optimistic view on the calculation of full G for 
almost rigid molecules in solution, including thermal 
molecular motion effects, in section V.D. We must 
relate here our difficulties to get reliable results when 
the solute is composed by two or more loosely bound 
molecules. The main difficulty is related to the 
description of the rotational motions, for which 
definition of the appropriate partition function is not 
trivial. Another problem (related to the first one) is 
the determination of the pertinent G(Q) surface, 
markedly flatter than in vacuo and extremely sensi- 
tive to  the basis set, the CP corrections, etc. Here 
again the difference between surfaces in vacuo and 
in solution is due to differential interaction effects. 
As an example we quote the study of formamide, 
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large number of papers, is highly recommended, 
because it may spur the ingenuous researcher to  
devise new exploitations of this information. 

The solvent shifts of MO energies has been the 
subject of several papers.69~305,427,623-626 Two of these 
papers69t427 show how sensitive the MO energy shifts 
are to  the shape of the cavity and t o  the electron 
correlation effects. Caution should be taken when 
drawing conclusions from MO energy shifts computed 
with low accuracy. 

The so-called stereoelectronic effects are all influ- 
enced by the solvent. A typical example is the 
anomeric e f f e ~ t , ~ ~ ~ , ~ ~ ~ , ~ ~ ~ - ~ ~ ~  for which an interpreta- 
tion in terms of semiclassical fields has been found 
enlightening.304 Here again simple solvation models, 
based on a point dipole in a spherical cavity, cannot 
be used for an interpretation, even when they are 
valuable to detect solvent effects on the stability of 
molecular conformations. With more detailed models 
the influence of the medium, expressed in terms of 
the reaction potential cD0 or of the reaction field, 
complements and modifies the effects due to the 
chemical subunits of the molecule, which are ex- 
pressed, for uniformity, in terms of the electric 
potential (of field). Other formulations, not based on 
semiclassical fields, may be of course employed. The 
indices used for the interpretation in vacuo will be 
in this case modified by the solvent. 

The deformation of excited-state energy surfaces 
induced by the solvent can be even more important 
than in the ground state. As an example, we quote 
a study on the photoisomerization of the DCM dye 
(a substituted styrylpyran), applying both the On- 
sager and the solvaton models.634 

C. Molecular Observables 
The calculation of molecular observables is straight- 

forward in quantum mechanical continuum solvation 
procedures. However, it is well known that several 
primary, derivative, and induced o b ~ e r v a b l e s ~ ~ ~  of 
isolated molecules require a sophisticated level of 
theory and suitably large basis sets to  get reliable 
values. The same holds for observables in solutes; 
the solvent does not introduce simplifications. 

For this reason many of the calculations of mo- 
lecular observables published in the past years have 
an exploratory character, rather than being accurate 
studies. We quote here some examples of observables 
which have been the object of calculation: vibrational 
polar i~abi l i t ies ,~~~ circular d i ~ h r o i s m , ~ ~ ~ - ~ ~ ~  nuclear 
quadrupole coupling c o n ~ t a n t , ~ ~ ~ , ~ ~ ~  and spin-spin 
coupling constants.642 These examples have been 
drawn from the activity of Rivail’s group only, one of 
the most interested in the evaluation of spectroscopic 
properties with potentially adequate methods. Other 
examples may be found in papers quoted in section 
IV.B. Observables related to  vibrational and elec- 
tronic spectroscopy will be considered in section VII. 

A special role is played by the electrostatic proper- 
ties, such as multipole moments or the MEP, because 
of their direct connection with AGel. Occasional 
comments about these and other related properties 
can be found in many papers. As a general rule, an 
increase of charge separations and of multipole 
moments is observed in passing from an isolated 

molecule to  the solution. We can cite here more 
specific studies on neutral solutes by our group249,4188419 
and on small anions by Luque et al.643 Geometrical 
and electronic relaxation of the solute may cooperate 
significantly, as shown by Cramer and Truhlar on 
nucleic acid bases.644 

We have not quoted here papers reporting the 
calculation of molecular observables with more crude 
methods, mainly based on effective solvation semiem- 
pirical formulations (references may be found in 
section IV.B.6). These applications may give a rough 
rationale of changes of the properties in a set of 
related molecules, and parallel, in our opinion, the 
use of empirical solvent parameters, like Kosower’s 
2 value,645 Kamlet and Taft’s a, ,!?, n* solvatochromic 
parameters,646 Dimroth and Reichardt’s ET param- 
e t e r ~ , ~ ~  Guttman’s acceptor and donor  number^,^^)^^ 
and many others. The large literature on this subject 
is well covered by detailed reviews. (The updated 
1990 edition of Reichardt’s monograph650 is recom- 
mended.) 

The recent progress in the continuum methods 
should stimulate a renewed interest in establishing 
connections between these empirical parameters and 
similar formulations drawn from computations. In 
such a way a better physical understanding of the 
parametric relationships and a greater confidence in 
their use could be reached. Previous attempts in this 
direction have shown that such an approach may give 
important results, but a decisive effort has been thus 
far impeded by the crudeness of the available com- 
putational procedures. 

In conclusion, not much accurate work on molecu- 
lar properties has been done until now, probably 
because reliable continuum models were not avail- 
able until recently. There are several fields in which 
accurate estimates of molecular properties in solution 
are urgently requested, for example the hyperpolar- 
izabilities in nonlinear which may differ 
from the gas phase values by a factor up to 3. The 
few calculations make use of a spherical cavity.651,652 

The situation is now changing, and we hope that 
the new expressions for energy derivatives presented 
in section IV.E will be of some help. There are some 
examples of recent calculations indicating more 
clearly the prospects for the future. In a recent paper 
Cremer et al.653 use a combination of IGLO calcula- 
tions with good basis sets with our PCM procedure 
(the code is called PISA-IGL0654) to  calculate NMR 
chemical shifts in solution for stannyl compounds and 
BH3NH3. The story of this last compound is instruc- 
tive. Schleyer and correctly pointed out 
that the deviation between computed and expeir- 
mental values for llB chemical shift found for this 
compound was basically due to a shortening of the 
B-N distance occurring in solution. They found a 
better agreement with experimental chemical shifts, 
when the IGLO calculation in vacuo was performed 
at  a geometry optimized with the PCM (solvent 
cyclohexane). Cremer et al.653 confirmed Schleyer’s 
findings, with the addition that a parallel effect of 
similar magnitude is due to solvent electrostatic 
effects, as distinct from geometrical deformations (in 
this case the solvent is water). 



Molecular Interactions in Solution Chemical Reviews, 1994, Vol. 94, No. 7 2075 

VI/, Dynamical Effects in the Continuum Model 

A. The Role of the Continuum Approach in the 
Description of Chemical Dynamical Phenomena 

We consider in this section some phenomena for 
which a static description of the solvent is not 
sufficient. More physics can be added to the basic 
model examined in the first sections of this paper, 
in particular for the description of time dependent 
phenomena, among which are the dynamics (and 
kinetics) of chemical reactions. 

We cannot review exhaustively the impressive 
number of recent methodological and applicative 
contributions in this field, supported, and spurred, 
by new experimental evidence based on innovative 
techniques. The continuum representation of solvent 
effects plays an important role in the evolution of this 
branch of the physicochemical research, but obviously 
does not constitute the unique element of theories 
and models. It would be quite interesting, and useful 
for future progress, to have a coherent overview of 
the evolution of continuum models in this field. This 
overview would bring out that the general trend 
toward chemical, rather than physical, models (see 
section I) is presently active in this specific field. 

The continuum models used until recently are of a 
simple structure. Let us take as an example the 
important case of charge-transfer reactions.671 We 
may notice that the theories of M a r ~ ~ s ~ ~ ~ - ~ ~ ~  and 

as well as the earlier formulation of the 
theory of Levich and D o g ~ n a d z e , ~ ~ ~ , ~ ~ ~  use continuum 
models where the solute is structureless and the 
solvent isotropic. These models are, in other words, 
extensions of the Born model (section III.B.l). The 
description of the solvent structure and dynamics 
around the charged species has been improved in 
different directions: application of a quantum elec- 
trodynamic theory of continuous media in terms of 
appropriate Green functions of the medium;680 elabo- 
ration of structured continuum models, based on 
nonlocal dielectric theory; introduction of several 
concentric layers of solvent at low dielectric constant 
(very detailed reviews of these subjects are avail- 
ab1e;681-683 see also section VIII). All the approaches 
mentioned here refer again to  simple spherical 
solutes. 

The availability of more detailed experimental data 
and of more realistic computer experiments has led 
in recent years to  a further elaboration of models, 
embodying refined continuum approaches. See for 
instance ref 684 for a review on the recent progress 
in this field. 

The case of charge-transfer reactions is just one 
example of a wide class of dynamical phenomena in 
which the same evolution from “physical” to  “chemi- 
cal” models occurs. It is clear that we cannot include 
in this paper a review of the role played by the 
continuum approximation in this field. 

After these introductory considerations, let us 
define more exactly what are the subjects considered 
in this section. We shall consider the first steps of 
the evolution of the “chemical” basic model to treat 
a few selected problems of dynamical nature. In 
several cases the models here considered do not 
contain time as an explicit parameter; conventional 

D. Applications in Computer Simulations 

We have remarked several times that continuum 
models benefit from the results of computer simula- 
tions. In this short section we point out that simula- 
tions may exploit some continuum methods and 
results. 

One of the most delicate problems in chemical 
simulations concerns the boundary conditions. Given 
the finite number of molecules in the simulation 
procedure, appropriate boundary conditions must be 
imposed if the researcher is not interested in model- 
ing a finite cluster. We cannot review the large 
literature on this subject; suffice it to  say that all the 
definitions have drawbacks. 

Among the various proposals, one is to surround 
the finite cluster with a dielectric continuum. The 
first proposal of this kind, according to our files, came 
from Barker and Watts;656 several other proposals 
and analyses have been p r e ~ e n t e d ~ ~ ~ + ~  among which 
there is the already quoted paper by Romano.lo3 
Some of the papers address the evaluation of the 
appropriate dielectric constant (see also Allen and 
Tiddesley’s book31). Classical versions of continuum 
methods must be employed here. Friedman,168 in his 
paper on the image charge method, suggests it is 
appropriate to  describe boundary conditions in simu- 
lations. These proposals do not satisfy fully the 
boundary requirements of simulations and present 
some problems themselves. For example, working 
with a fixed cavity, spurious effects arise when a 
molecule comes too close to  the cavity boundary from 
inside. More recent formulations of the classical 
continuum model can give more satisfactory results. 

Another problem that plagues the simulation of 
certain chemical systems is the inadequacy of two- 
body potentials. Using three-body potentials consid- 
erably increases the computational costs, without a 
complete elimination of the artifacts.668 It is well 
known that the most important source of non additive 
many-body effects in polar systems is the classical 
electrical polarization. 

The most annoying artifacts concern polar solutions 
containing highly charged ions. A simple expression 
for the correction of pair potentials, based on classical 
continuum models, has been proposed and tested by 
Berendsen et al.669 The numerical values of param- 
eters have been obtained by performing several trial 
simulations, with different combinations of the Val- 
ues. 

More recently, Floris et a1.534 used PCM calcula- 
tions to  get effective two-body potentials with a full 
account of many-body polarization terms. Applica- 
tions to a large number of cation-water systems is 
quite satisfactory.670 Molecular dynamics simula- 
tions give a correct representation of hydration 
numbers and of solvation layers. Particularly inter- 
esting is the case of Ca2+, for which an interpretation 
of the somewhat puzzling experimental results is 
given, in terms of a dynamical equilibrium between 
two structures, with eight and nine water molecules, 
respectively, in the first shell. 
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quantum chemistry is not at ease in treating time- 
dependent phenomena and prefers to  resort to  static 
pictures; time evolution is introduced at a later stage, 
or alternatively a complex phenomenon is dissected 
into separate steps, each treated with a time- 
independent formalism.340 A few simple formula- 
tions, some of which of very tentative character, are 
explicitely time-dependent. The starting point is the 
experience gained in the studies of the basic static 
model. This line of evolution is very promising, in 
our opinion, and of fundamental importance in as- 
sessing methods able t o  describe dynamical aspects 
of phenomena of direct chemical interest. 

B. Computational Methods 
A basic ingredient in the evolution outlined in the 

preceding section is the implementation of methods 
able to compute Gel, and related energetic quantities, 
in a medium characterized by a polarization vector 
P(t) depending on time. We have defined up to now 
a P vector independent of time, with the additional 
assumption of an infinite linear isotropic medium. 
Here we retain the hypotheses of isotropicity, infinity, 
and linearity. 

The best approach to treat problems characterized 
by the presence of a P(t) function is provided by the 
quantum electrodynamics theories we have men- 
tioned. This approach will not be followed here, and 
it will remain in the background, as a useful refer- 
ence for simpler models. 

The quantum electrodynamical picture is consis- 
tent with a description of P in terms of an expansion 
over normal modes (with frequency Y) of the polariza- 
tion of the dielectric: 

P = CPV 
V 

v may be a discrete or a continuum index. 
A concise and clear exposition has been given by 

L e v i ~ h . ~ ~ ~  The model can be simplified by replacing 
the summation of eq 161 with two terms alone, often 
called the fast and slow contributions to  P: 

Pfast is connected to polarization of the electron charge 
clouds and Pslow to nuclear motions of the solvent 
molecules. It is convenient to  recall here the typical 
times for these processes. Electronic relaxation times 
are of the order of 10-16-10-15 s; vibrational relax- 
ation occurs in the range 10-14-10-12 s and rotational 
diffusion in 10-11-10-9 s; translational times are of 
the order of s or more. The fast component of P 
is clearly related to electronic polarization, Pm = P e l ,  
and the slow component collects the other terms; it 
is often called the orientational polarization (Psiow = 
Po,), but a less specific definition, such as “inertial” 
component (Pslow = Pi,) is preferable. A more precise 
definition of Pslow, based on the characteristic times 
reported above, will be convenient in some cases. 

The static value of P, Pstat, and the fast component, 
Pfast, can be defined in terms of experimental quanti- 
ties, namely the static and optical susceptibilities: 

E o  - 1 
Xstat - 7 - (163) 

where EO and 6- are the static and optical dielectric 
constant (the latter assimilated to n2(-), the square 
of the refraction index at very large frequency). 
There is no direct operational definition of xSlow. 
However, assuming the partition P = Pfast + PSIow, 
we may also define ~~l~~ as179@6 

(165) 

This model has been applied to systems in which 
there is an evolution in time of the charge distribu- 
tion of the solute, It is assumed that Pfast 
follows, without appreciable time lag, the evolution 
of the electric field, - V@g)( t ) ,  while PSIow feels the 
total electric field experienced by the system at an 
earlier time. In several applications the “earlier 
time” can be assumed to precede beginning of the 
time evolution of In this case PSIow is, at any 
time, the corresponding contribution to  P in the 
static, or initial, situation. This model has been 
developed and applied by many authors: we quote 
here M a r ~ ~ s ~ ~ ~ - ~ ~ ~  and Hynes686@7 as typical and 
well-known examples, but the list could be quite 
longer, especially if one would include analogous 
models with some differences in the basic assump- 
tions. 

The “chemical” realizations of this model to  our 
knowledge are based on the apparent surface charge 
approach (ACS, see sections 1II.D and rV.B.3) and 
more specifically on some modifications of the itera- 
tive PCM procedure. 

The first formulation is due to Bonaccorsi et a1.339 
The method was elaborated for the study of solvent 
effects on electronic spectra; in this case it is reason- 
able to  assume that the “earlier time” (E) im- 
mediately precedes the transition from state 1 to 
state 2; the actual time (A) immediately follows the 
jump (in absorption as well as in emission). At time 
E we perform a normal PCM calculation; the solvent 
is in equilibrium with @M for electronic state 1. From 
the surface charge OE thus obtained, it is easy to 
separate the orientational (slow) contribution on the 
basis of the equation 

OE = OE,fast + oE,slow (166) 

The charge distribution OE,fast is obtained by repeating 
the PCM cal5ulation using cm instead of E O .  The 
perturbation 8; associated with O E , ~ ~ ~ ~  is then intro- 
duced in the Hamiltonian as a permanent contribu- 
tion, and the calculation is repeated with the dielec- 
tric constant em, to  determine the wave function of 
state 2 and the charge distribution OA. This proce- 
dure describes vertical transitions, at fured nuclear 
geometry. (For this and other approximations see 
comments in papers by Bonaccorsi et a1.340,341 and by 
Sheykhet et a1.68s) The program has been developed 
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pioneered by B a y l i ~ s , ~ ~ ~  essentially on the basis of 
classical arguments, and then recast in a quantum 
mechanical formalism, using second-order perturba- 
tion theory as the starting point, by O ~ s h i k a , ~ ~ ~  
M C R ~ ~ , ~ ~ ~  and many others.699-703 Several detailed 
reviews are available; we refer to those given by 
Basq704 Mataga and K ~ b o t a , ~ ~ ~  Amos and Bur- 
r o w ~ , ~ ~ ~  and S ~ p p a n . ~ ~ ~  

The model is based on the use of the reaction 
potential concept, with partition into inertial (slow) 
and electronic (fast) components. In light absorption 
processes we are concerned with the energy differ- 
ence between the solute in its ground state (GS) in 
equilibrium with the solvent, and in the excited state 
(EX) that experiences the inertial components of the 
GS reaction potential and the fast component related 
to the EX charge distribution. In fluorescence pro- 
cesses the energy difference regards the EX state in 
equilibrium with the solvent and the GS state feeling 
the inertial EX reaction potential and a fast contri- 
bution due to the GS charge distribution. This model 
is justified because the lifetime is in general long 
enough s) to  ensure solvent equilibration prior 
to  the photon emission. 

A number of approximations are then introduced, 
regarding both the solute model (reduced to a point 
dipole inside a spherical cavity), and the application 
of the second-order perturbation theory. In this way 
it is possible to  write a compact formula, in which 
the main terms correspond to the Bell-Onsager 
formula for the solvation energy, computed with 
ground- or excited-state dipole moments ( ~ G S  and 
 EX), and with the dielectric constants €0 and E,  = 
n2. We report here McRae’s expression698 in Mataga- 
Kubota’s formalism:705 

at  the ab initio SCF level, with use of the electron- 
hole potential (EHP) method335 for excited states. 

A more general version of this method has been 
recently elaborated by Aguilar et al.179 The surface 
charge distribution o ~ , ~ l ~ ~  is here computed directly. 
This requires the explicit consideration of special 
electrostatic boundary conditions at the cavity sur- 
face, different from those valid in the static case. A 
compact expression of the free energy functional is 
also given. The computational package is no longer 
limited to the study of electronic transitions and 
allows one to make calculations at the SCF (RHF, 
UHF), MCSCF, and CI levels. The renormalization 
of the surface charges oslow and of,,t plays an impor- 
tant role, as in the equilibrium model. The renor- 
malization conditions are 

The formulation of Basilevsky and C h ~ d i n o v ~ ~ ~ f j ~ ~  is 
similar to  that of Aguilar et al.,179 although cast in a 
different form. The elaboration of the formalism is 
extended689 to get the characteristic equation which 
determines the complex-valued frequencies wy of the 
dielectric spectrum E(w),  necessary for dynamical 
treatments. In the implementation of the method, 
Basilevsky and Chudinov prefer, for technical rea- 
sons, an expression of the solute wave function in 
terms of CI expansions. In such a way the original 
idea of of using Pslow as a dynamical 
variable, is extended t o  a collection of variables Y a b ,  
with indexes a and b running on the configurations 
included in the calculation:690 

where the @ab is a single state or transition density 
involving the configurations a and b. We note that 
oslOw defines a two-dimensional continuum set of 
dynamical variables, which can be defined also for 
single-configuration (SCF) wave functions. This 
continuum may be discretized, when a description of 
o in terms of point charges is adopted. In addition, 
the shape and location of the cavity surface may also 
be considered as a dynamical variable. The CI 
approach of Basilevsky and Chudinov has been 
applied, and extended, in a set of papers.691-695 

We shall consider again the question of the dy- 
namical variables in section VI1.E. 

C. Solvent Effects on Electronic Spectra 
Much attention was paid in the 1950s to the 

elaboration of models for the interpretation of solvent 
effects on the electronic states of a solute M, and on 
the frequency shift for absorption and emission 
spectra. Here we are interested in the approach 

+ AF,,, = (A + B + C) - n2 - 1 
2n2 - 1 

+ AFauor = (A + B + C) - n2 - 1 
2n2 - 1 

Terms A-F are functions of the properties of the 
solute: oscillator strength, dipole moments ~ G S  and 
 EX, cavity radius a ,  etc. The dipole moments of the 
solute are present in the C, E ,  and F functions: 
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The solvent shift is thus reduced to a dispersion 
contribution, related to the A + B function, which 
produces a red shift, and to electrostatic contribu- 
tions. The separation between inertial and fast 
polarization makes the difference between the ab- 
sorption and emission shifts. The electrostatic con- 
tribution may lead to a blue shift, if ,UEX < ~ G S .  

The other models mentioned at the beginning of 
this section lead to analogous formulas, with minor 
modifications. It is noteworthy that a different 
approach pioneered by Abe708 leads to  similar for- 
mulas (see e.g. Amos and Burrows706). Abe considers 
a discrete molecular picture of the solution, not 
introducing the reaction field picture, and performs 
appropriate averages on the molecule-molecule in- 
teractions. 

All the methods mentioned thus far have not been 
conceived for numerical calculations, but rather to  
interpret and rationalize experimental data. Some 
of the factors appearing in the A-F functions can be 
estimated from experimental data, but often the 
analysis has been limited to the detection of a linear 
correlation with the dielectric constant function of eqs 
171 and 172. As an example of successful application 
of this approach, we mention the studies of Ito et 

on Avabs of ketones, of Robertson et 
of azulene, and of Kubota and Yamakawa711 about 
the AVabs of pyridine and acridine N-oxides. 

These formulas have been recast more recently in 
a form suitable for molecular calculations. The SCRF 
computational model of Tapia and Goschinski (a 
dipole reaction field for a spherical cavity, we recall) 
is suited for an immediate transcription of McRae’s 
theory. Raudino, Zuccarello, and Buemi have devel- 
oped some variants of this approach, using them in 
actual calculations on systems of chemical and bio- 
chemical interest.149,712-717 The most detailed de- 
scription is given in ref 714. The SCF ground state 
calculation is performed at the IND0/5 semiempirical 
level, the excited-state wave function via a single 
excitation configuration interaction procedure (SECI). 
Perturbation theory is applied to approximate the 
energy term connected with the solvent fast polariza- 
tion, i.e. with the response to the change of the solute 
dipole due to the electronic transition. 

Tapia’s approach is improved by introducing in the 
reaction potential operator multipoles with higher I 
values. (In this paper the authors consider the 
rhodopsin system, which is rather asymmetric, and 
they find necessary to include terms up to I = 20.) 
The dispersion contributions are evaluated with an 
atom-atom Lennard-Jones (6-12) potential assum- 
ing that the solvent distribution is uniform. 

This computational model has also been applied to 
systems exhibiting local and large-scale anisotropies 

on 

(effects of dielectric saturation, solutes near a lipid 
membrane-water i n t e r f a ~ e ) . ~ ~ ~ - ~ ~ O  In every case the 
cavity if spherical. 

Another version of McRae’s model, suited for 
molecular calculations, has been elaborated by b e l -  
son and Zerner;283a284,291,721 a detailed description is 
given in ref 721. A spherical cavity and a dipole 
reaction field are assumed; GS and EX wave func- 
tions are computed using INDO/S-CIS procedures 
(with the parameters obtained by Zerner722+723). The 
attention is focused on the Hamiltonian models to  
be used for the description of the electronic excitation 
process. A first model (A) defines the Hamiltonian 
as gM = &$) + the interaction operator ?; is 
determine! at the SCF level for the ground state, and 
the same EM is adopted in the CI calculation for the 
excited states; two terms, representing the work for 
slow and fast solvent polarization, are added to the 
total computed energy. In a second model (B), a 
different Hamiltonian is defined: $TM = @;) + 
4g2; no slow polarization term is added. Two vari- 
ants of models A an$ B, called A1 and B1, are 
obtained by defining 4; through a “mean” reaction 
field (an average of ground and excited state Qo). All 
the four models are meant to  represent electronic 
transition processes, with reasonable assumptions 
about the behavior of the solvent polarization in a 
very short time scale. However, these models are not 
equivalent among themselves, as shown also by the 
(relatively small) differences in the numerical results. 
Notice that the use of the X, Hamiltonian in an 
iterative SCRF procedure is not equivalent to  the 
minimization of the &VI) functional (eq 71, section 
N.A). 

The computational models considered thus far are 
limited to spherical cavities. An ASC method ac- 
cepting cavities of general shape has been proposed 
by Bonaccorsi et a1.339-341 This method has already 
been viewed in section VI1.B; we add here that two 
versions have been presented for vertical (i.e. without 
changes in the geometry) absorption/emission pro- 
cesses. The first one, computationally more demand- 
ing, builds up iteratively a unique effective Hamil- 
tonian for the GS and EX states, while the second 
version uses two different Hamiltonians. In this case 
the GS and EX wave h c t i o n s  are no longer orthogo- 
nal, but the effect of the fast component of P is not 
so large as to compromise the ordering of the lowest 
energy levels of the solute. The model has also been 
extended to consider geometry rearrangements prior 
to  the fluorescence or phosphorescence emission. 

The same procedure has been applied by Fox et 
al. in conjunction with the semiempirical INDO/ 
S-CI method. They compare it with a finite elements 
method, studying several rodlike molecules with 
charge-transfer transitions. 

A more accurate PCM procedure to  evaluate energy 
differences in light absorption phenomena has been 
recently presented by Aguilar et al.179 (for comments 
see section VI1.B). 

Ooshika-McRae’s model, which we have discussed 
here in formal and computer-suited formulations, 
singles out from a complex dynamical phenomenon 
two distinct steps that can be treated without explicit 
use of a time-dependent formalism. For each step, 
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we may consider an equilibrium polarization of the 
solvent (both n,,t and uslow updated according to e M ) ,  
as well as nonequilibrium situations. We have 
discussed the expression of the free energy for the 
equilibrium situation in section IV.A. It is possible 
to define a free energy functional also for nonequi- 
librium p o l a r i z a t i ~ n , ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~  but attention must be 
paid in the application of this formalism to spectro- 
scopic problems. The emission lifetimes (fluorescence 
and, a fortiori, phosphorescence) are normally long 
enough to ensure a complete relaxation of the inertial 
component of the polarization. However, time- 
resolved fluorescence studies may give information 
about the dynamics of this process. The reorganiza- 
tion of the solvent may be accompanied by changes 
in the solute geometry. Continuum methods may 
treat, at least in an approximate way, these phenom- 
ena too, but it is convenient to consider such pro- 
cesses as a specific case of chemical reactions, a 
subject that has been treated in section VI. 

D. Molecular Vibrations 
The study of the vibrations of the solute presents 

dynamical aspects and may be considered in this 
section. 

Let us first consider a model employed for many 
years to  treat solvent effects on the properties of a 
vibrating solute. Some of the assumptions of the 
basic continuum model are maintained (isotropic 
dielectric medium without dispersion, infinite dilu- 
ition). The vibrating solute is reduced to an oscil- 
lating dipole within a spherical cavity; this is an 
extension of Bell-Onsager model for a static solute. 
The expression of the solvent shift Av is given by the 
so-called Kirkwood - B auer - Magat formula: 724 

where C is a constant depending on the properties 
of the vibrating system. 

Actually two separate derivations lead to the same 
eq 178, but with two different expressions for C. 
Kirkwood's derivation has not been the object of a 
specific publication; it was used for the first time by 
West and According to this model the 
frequency shift is due to an instantaneous change of 
the polarization of the medium as the molecule 
vibrates. The effect on the solvation free energy 
AGel(x), where x is the elongation of the oscillator, 
may be evaluated with Bell's model, eq 23, using the 
Taylor expansion of the solute charge distribution p: 

(179) 2 y =yo +,up +yp + ... 
The modification Ak of the force constant is 

The constant C in eq 178 is thus 

(181) 

where a is the radius of the spherical cavity. West 
and apply a more complex formula, 
suggested again by Kirkwood, corresponding to  a 
dipole out of centre in the spherical cavity. 

Bauer and Magat724 remarked that the interaction 
with the medium modifies the static properties of the 
oscillator. In particular the equilibrium length I will 
be increased by an amount xg which may be evalu- 
ated as 

The force constant k may be related to the length of 
the oscillator by an expression of the type 

k = ko +fx (183) 

where f is an anharmonicity factor depending on the 
mathematical expression of the potential function 
(e.g. a Morse oscillator). The constant C in this model 
is 

The Kirkwood-Bauer-Magat model has been re- 
fined (with extensions to  polyatomic molecules) by 
many a ~ t h o r s . ~ ~ ~ - ~ ~ ~  The dipole-in-a-sphere model 
has also been used to elaborate formulas for IR and 
Rahman intensities.727,728j736-743 More recently the 
Bauer-Magat formula has been tested versus ab 
initio calculations.297 

The relatively abundant literature, of which we 
have only quoted some significant examples, is based 
on the classical picture of the dielectric medium. 
Other approaches not based on a continuum model 
have been employed in more recent times and are 
presently applied with success. It is however beyond 
the scope of this review to examine these methods. 

The application of quantum mechanical continuum 
methods to vibrations has been considered only in 
recent years. The schematic analysis of Kirkwood- 
Bauer-Magat model reported above shows that there 
are two kinds of effects to  be considered. The first 
one is of static nature (Bauer-Magat model in our 
example) and the second one is of dynamical nature 
(Kirkwood model). 

Considering typical vibration times (ranging in the 
interval to  s) it is evident that the 
separation of P into inertial and fast contributions 
(P = P i n  + Pel) must be reexamined with care, taking 
into account the characteristics of the specific solute 
vibrations and the properties of the solvent. 

Olivares del Valle and T ~ m a s i ' ~ ~  examined a 
sequence of models, for the case of the vibrations of 
M-H groups in isolated MH monomers and in 
hydrogen-bonded dimers (MH-MH). The ASC ap- 
proach in the PCM formulation has been used for the 
evaluation of the potential energy as a function of 
the molecular elongation x = R - Req, with separate 
evaluation of mechanical and electrical anharmonic- 
ity contributions. The corresponding dipole moment 
p(x) is also computed, in order t o  determine the 
absorption intensities. 
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The models examined in this and subsequent 
works745!746 are summarized in the following. 
(1) The cavity is fixed, with the shape suitable for 

the equilibrium geometry, and the apparent charge 
distribution is also kept fured as found in equilibrium 
calculations: 
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here we have put in evidence that the calculations 
are performed using the static value EO of the dielec- 
tric constant. 

(2) The cavity shape is kept fured as in 1, and 0 is 
computed using the solute charge distribution QdR) 
for each elongation x: 

0 2  = deo,@~(R)I (186) 

(3) The cavity is still fured and u is split in two 
parts: the first one is related to EO and to the @M(%q) 
distribution; the other one is related to the optical 
dielectric constant E ,  and to the difference eM(R) - 
@M(%q) (equilibrium and instaneous charge distribu- 
tion): 

(4) The cavity follows the nuclear displacements, and 
0 is computed using at each geometry the cor- 
responding wave function: 

0 4  = deo,@M(R)) (188) 

In this set of models both u and the position of the 
cavity surface have been considered as possible 
dynamical variables (see section VI1.B). Model 1 
assumes a completely static description with charges 
frozen at  the equilibrium values; model 4, on the 
other hand, assumes a perfect following, without any 
time lag. 

The static description 1 gives poor results for the 
MH (and (MH)z) systems thus far examined, particu- 
larly when one considers displacements large enough 
to feel overtones and anharmonicity contributions. 
Model 4 neglects all the delay effects, which have an 
important role in proton-transfer processes and pre- 
sumably in accurate studies of M-H vibrations. 
Models 2 and 3 yield estimates of the properties of 
M-H vibrations, particularly of the harmonic fre- 
quency, in reasonable agreement with scanty avail- 
able experimental data. These models (and others 
of similar nature, not considered here for brevity) try 
to mimic the dynamical behavior, for which more 
refined formal elaborations (e.g. Bafiacky and Zay- 
ak747,748) have not yet found a computational realiza- 
tion. 

The modeling of M-H vibrations cannot be con- 
sidered completely satisfactory, and further efforts 
are necessary. The results obtained thus far, how- 
ever, are sufficient to  have a guess on the frequency 
shift Av(M-H) for groups involved in hydrogen bonds 
with solvent molecules, and for the related changes 
of the zero-point energy of the solute. Reference 745 
points out the importance of an accurate description 
of the surface charge distribution. 

In passing to vibrations with lower frequencies the 
completely static description becomes untenable. A 
case studied with some attention is the bending 
vibration of water, including effects due to electron 
correlation. (A summary of the results can be found 
in ref 746.) For slow vibrations, especially when 
involving large amplitude motions, approximation 4 
seems to be preferable. 

Wiberg and c o - w ~ r k e r s ~ ~ ~  have elaborated a method 
to compute the harmonic frequencies of the solute in 
the framework of the GAUSSIAN programs. The 
procedure to  get analytical expressions of the second- 
order derivatives with respect to normal coordinates 
is quite elegant and effective. 

The method, to  our knowledge, is limited to the 
case of a spherical cavity with a dipole reaction field; 
in the evaluation of the harmonic frequencies the 
cavity and the reaction field are kept fned. The 
model is thus a version of approximation 1 presented 
above; some inconveniences of this approximation are 
probably smeared out in medium-size molecules, but 
the results obtained with this procedure must be 
taken with caution. 

E. Dynamical Aspects of Chemical Reactions 
The static descriptions of the chemical reactions in 

solution with continuum models have been consid- 
ered in section W.B. We shall examine now some 
dynamical aspects of the reactions, using again the 
continuum model. 

The starting point is represented by the G(Q)  
hypersurfaces, defined in section W.B, as the ana- 
logue in solution of the E(Q)  hypersurfaces.590 For a 
given reaction the space of the nuclear coordinates 
in solution {Q} may differ from that in vacuo, {Qv}, 
as already said, because some solvent molecules may 
play a specific role, and their coordinates must then 
be inserted in the (Q} space. 

The presence of the solvent introduces other changes 
in the dynamics of reactive processes. The relative 
motions of the atoms of the reacting system are 
subject to  friction and random forces. These forces 
act during the whole reaction process, but their effect 
will be more evident in two distinct steps, the 
approach of reactants in bimolecular processes (as 
well as the separation of products) and the crossing 
of the energy barrier. Continuum models are giving 
important contributions to  the study of diffusion 
processes, especially in the case of structured aniso- 
tropic media. We shall not consider this topic here. 

The solvent friction effects during the crossing have 
a remarkable influence on the rate constant. They 
are generally described using K r a m e r ~ ~ ~ ~  or  Grote- 
H y n e ~ ~ ~ O  theories, based on the Langevin and gen- 
eralized Langevin equations, and successive modifi- 
cations. 

Kramers formulation is directly related to the 
continuum description of the medium: the “hydro- 
dynamic” friction constant 6 does not make reference 
to a discrete solvent. In the Grote and Hynes model, 
the time correlation function (RR(t)) of the solvent 
random forces R enters the expression of the friction 
constant, t ( t )  = (l/kT)(RR(t)). In this way they 
introduce corrections related to the discreteness of 
the solvent random motions. 
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However, other factors could be considered. During 
a large part of the reactive trajectory of a system of 
medium size, the solvent has time enough to rear- 
range itself, and the G(Q) surface calculated in the 
equilibrium approximation may suffice. There are 
however limited regions of the trajectory where this 
approximation is no longer acceptable because large 
changes in the solvent polarization should occur in 
a short time; dielectric solvent retardation effects are 
here important. It is then necessary to increase the 
number of dynamical variables, by adding to the 
solute degrees of freedom one or more solvent coor- 
dinates. 

A limiting case may here be considered as an 
example. In the outer-sphere electron-transfer reac- 
tion mechanism between two spherical ions, there is 
no change in the first solvation shell radii during the 
ET process, according to Marcus’ mode1.672-676 The 
barrier for the electron transfer appears in a “solvent 
coordinate” s which measures deviations from the 
equilibrium distribution of the solvent. The s coor- 
dinate has been defined by Z ~ s m a n ~ ~ l  in terms of an 
electrostatic continuum model as 

where Fi is the electric field in vacuo generated by 
the solute (K = R, reactants; K = P, products), Piq is 
the equilibrium polarization of the solvent and P(r) 
is the actual time-dependent polarization (see also 
A l e x a n d r o ~ ~ ~ ~  and Calef and W ~ l y n e s ~ ~ ~ ) .  

Another definition of s has been recently given by 
Cossi et a1.754 using the PCM algorithm. In this case 
s is defined in terms of the radii of the cavities 
surrounding the two ions. The dynamical effects are 
represented by deviations of these radii from the 
equilibrium values. 

A decisive step in the definition of combined solute 
and solvent coordinates is presented in some papers 
by van der Zwan and Hynes755 and by Lee and 
H y n e ~ . ~ ~ ~  The continuum model is recast in terms 
of an explicit solvent coordinate s depending on the 
distance between two solute partners in the reaction. 

The physical modeling of the reactive dynamics has 
progressed much in the last years. An excellent 
introduction to this field may be found in the clear 
and authoritative review by H y n e ~ . ~ ~ ~  In the last 
years, progress in this field has been stimulated by 
the increasing reliability and efficiency of computer 
simulations, by the use of new experimental tech- 
niques and by recent developments in the basic 
underlying theory.757 

A “deluge” of papers, to  quote Weaver from his 
recent review,684 cover electron-transfer (ET) reac- 
tions, with a variety of approaches. There is, how- 
ever, a clear tendency to extend continuum models 
from ET to reactions of other type, such as proton 
transfer, S N ~ ,  S N ~ ,  etc. We cannot extend the present 
review to a systematic examination of these recent 
methods and applications, not even limiting it to 
methods in which the continuum model plays a key 
role. The subject well deserves a separate review. 
We shall limit ourselves to  outlining how the process 
of “chemical appropriation”, mentioned in the intro- 
duction, is developing also in this field. For poly- 

atomic complex systems the use of a single dynamical 
coordinate s, as in Marcus’ theory of ET and in its 
generalizations, may not be sufficient. An increase 
in the number of coordinates is also suggested by the 
availability of more sophisticated solute wave func- 
tions. 

Both the polarization vecto? Pin and the cor- 
responding reaction potential f&n may generate a 
three-dimensional continuum of coordinates. A set 
of dynamical variables of a lower dimensionality is 
given by the oi, charge distribution, in methods using 
the apparent surface charge (ASC) approach. In the 
PCM the set of coordinates is reduced to a discrete 
number, related to the radii defining the cavity and 
to the set of surface charges qin,k;  the index k runs 
over the representative points selected on the solute 
surface. 

These possibilities have been exploited in prelimi- 
nary studies of several groups. Truhlar and co- 
w o r k e r ~ ~ ~ ~  use Pi, without resorting to apparent 
charges. A solvent coordinate sa is defined for each 
internal coordinate &a of the solute; this formulation 
allows one to extend to molecules in solution the 
algorithms and concepts of the variational transition 
state theory. The main advantage of this model is 
its generality, which makes it suitable for the treat- 
ment of large classes of reactions. 

Basilevski-Chudinov’s is formulated 
in the framework of the PCM computational scheme. 
A configuration interaction (CI) formulation of the 
solute wave function is a d ~ p t e d . ~ ~ ~ , ~ ~ ~  The CI formu- 
lation leads to the definition of a larger set of 
dynamical variables Yab (see eq 170), each one involv- 
ing a couple a,  b of configurations. This formulation 
has been used to describe the dynamics of the 
reaction in the limit of the Born-Oppenheimer (BO) 
a p p r o x i m a t i ~ n . ~ ~ ~ , ~ ~ ~  It  is in fact customary to ex- 
amine dynamical phenomena in solution with the aid 
of two extreme models, namely the BO and the self 
consistent (SC) ones; the former assumes that elec- 
tron motions in the solute are slower than in the 
solvent, the latter the opposite. The BO approxima- 
tion may suggest the use of a direct reaction field 
(DRF, see section IV.B.5) approach, while the SC 
approximation requires equilibration of both compo- 
nents of P with an averaged distribution of the 
solvent (it is also called mean field approximation). 

Basilevski and Chudinov have compared the SC 
and BO limits with realistic molecular calculations, 
in a case where it is necessary to consider a reaction 
coordinate p, drawn from the nuclear conformation 
space {Q}. For the S N ~  reaction C1- + H3CC1 - 
ClCH3 + C1- they found no significant differences 
between the SC and BO limits.694 In this study the 
reaction coordinate p is discretized in a finite number 
of points, pa. For each integer a the equilibrium 
value of the set (qk(a)}  of apparent surface charges 
and the corresponding solute charge distribution 
gM(a) are computed. Then for each a a set of 
nonequilibrium values, one for each ,8 * a is obtained. 
The nonequilibrium solvent charges are denoted with 
{qk(a,P)}; for each a, P pair there will be a solute 
charge distribution gM(a,P) obtained with the solute 
at the geometry Pa and the apparent charges { q k ( P ) } .  
In this way a two-dimensional G,l(a,P) surface is 
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obtained; the first coordinate corresponds to p with 
equilibrium solvation, the second is a solvent vari- 
able. Basilevski and Chudinov do not treat explicitly 
the problems related to the shape of the cavity; the 
a and ,l3 indices cannot be too different, otherwise 
unphysical effects arise in the evaluation of G,l(a,j3), 
due to the excessive displacement of the (q~(j3)) 
charges with respect to the solute van del Waals 
surface. 

We note that the couple a, ,8 corresponds to the 
couple “earlier” (E)-“actual” (A) introduced by Agu- 
lar et (see section VI1.B). The formulas given 
in the latter work correspond to the SC limit. In 
another paper Aguilar et a1.759 define the main 
solvent dynamical variable in terms of the cavity 
shape, testing again the model on a sN2 reaction. In 
the reaction there is a net flow of representative 
points on the potential hypersurface starting from the 
reactant side and reaching the product side. For this 
kind of trajectories there will be a dielectric friction 
retarding the motion; as a result, the barrier is higher 
and displaced toward the products. The backward 
trajectories will feel a similar retardation effect; at 
the equilibrium the net flux will be zero. For each 
trajectory we define an appropriate delay for the 
center of each sphere defining the cavity. The 
position of the nucleus I is a function of the reaction 
coordinate, SI = sl(pa). The corresponding sphere, 
however, is not centered in SI(pa), but in a point 
corresponding to an earlier time, s~(pp) = sr(p,) - 
ASI(pa>. Here pp precedes pa along the reaction 
coordinate. The positional delay is assumed to 
depend on the velocity of atom I and on the rate of 
change of its electric charge. 

A novel feature in the description of dynamical 
aspects of reactions is the introduction of a full 
quantization of Pel presented by Kim and H y n e ~ . ~ ~ ~  
The quantization of Pel is performed via a coherent 
state formulation, coupled with a MCSCF represen- 
tation of the wave function. This feature makes the 
extension to larger basis sets and to larger solutes 
relatively easy. The approach is applied to a rapidly 
growing number of chemical problems; we quote here 
applications to s N 1  reaction~,~~O-~63 proton transfer,T64 
and S N ~ . ~ ~ ~  A recent review on the results thus far 
obtained with the Kim and Hynes approach 765b gives 
a clear indication of its potentiality. The examples 
shown here indicate that several groups are working 
at  the formulation of a “classical” model. Much more 
work is needed, but the perspective of using these 
rather sophisticated continuum models in extensive 
chemical calculations in a time not too far away is 
realistic. 

To end this section, we detail an attempt to  model, 
via the continuum PCM approach, the effect of 
stochastic solvent fluctuations on chemical reac- 
t i o n ~ . ’ ~ ~  An explicit consideration of stochastic fluc- 
tuations is not possible in the primitive model; the 
mean force potential (i.e. G) averages out the fluctua- 
tions, G being the minimum of the free energy 
functional. We have to abandon the canonical de- 
scription, and the computed energetic quantity loses 
the status of a free energy. We may thus invoke local 
fluctuations in energy, with frequency, intensity, and 
duration to be appreciated with the aid of molecular 
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dynamics simulations in pure 
Suitable supermolecule calculations on solvation 

clusters allow the connection of energy fluctuations, 
and related changes in the structure of the first 
solvation shells, to  changes in the solvent reaction 
potential; in the PCM the latter may be modeled by 
altering some of the { q k }  charges, via appropriate A&) 
factors. In such a way it is possible to follow the 
reaction dynamics and to compute the reaction 
kinetic parameters with a given set of A&) values. 
This has been done for a s N 2  reaction with the 
assumption that &(t) = A k ( 0 ) .  (The mean lifetime of 
a solvent fluctuation is longer than the time required 
to cross the barrier for the s N 2  reaction here consid- 
ered.) An average over the possible {A&!)} values 
must be performed. Solvent fluctuations can be 
introduced in the study of chemical reactions in more 
effective ways; however, as shown by this example, 
alternate applications of the continuum model are 
possible, and the sampling of a two-dimensional 
space (that of the apparent charge distribution a) 
may replace a more demanding sampling of solvent 
conformations. 

Vlll. lnhomogeneities and Anisotropies in the 
Solvent 

The modeling of the solvent as an infinite linear 
isotropic dielectric medium with E described by a step 
function 

E = 1 in the cavity (190) 

E = eo out of the cavity 
obviously is not a suitable approximation in many 
cases. We shall consider in this section some modi- 
fied versions of the basic model not involving time 
dependency. It is convenient to  collect all the modi- 
fications under the common heading “anisotropies” 
and to introduce then a classification of these anisotro- 
pies. 

The anisotropies may have a local character, or act 
on a large scale. Local anisotropies are limited to a 
portion of space near the solute or to other finite 
regions of space; large-scale anisotropies may affect 
the whole infinite medium, or larger portions of the 
space out of the cavity. 
A. Local lnhomogeneities 

The presence of a solute induces a local disturbance 
in the distribution of the solvent (the so-called 
cybotactic regions). The effect of these disturbances 
is evident in the radial distribution functions of the 
solvent atoms, which typically exhibit a positive 
deviation corresponding to the first solvation layer, 
followed by a more or less pronounced oscillatory 
behavior reaching the unit value characteristic of the 
bulk solvent. 

These disturbances are more evident when the 
solvent is a supercritical fluid, or when there is a 
strong solute-solvent interaction, as in the case of 
charged solutes in polar solvents. We do not consider 
here the case of supercritical fluids (quite interesting, 
indeed), and we focus our attention on charged 
solutes. The local anisotropies induced in the solvent 
may be reduced, to  a first approximation, to  the 
combination of two effects: dielectric saturation and 
electrostriction, acting in opposite directions. It is 
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Abe796 in papers with high impact: 

E ( r )  = eo exp{ -dr} (195) 

with K = a log EO and a = ion radius. 
Other expressions have been less used, in spite of 

their more consistent theoretical formulation. We 
quote here the formulas proposed by Booth,773 Bucher 
and Porter,781 and E h r e n s ~ n . ~ ~ ~  According to Booth 
we have 

generally accepted that dielectric saturation is more 
important than electrostriction, although recent com- 
puter simulation studiesg2 show that for singly charged 
ions the two effects are comparable. 

The nonlinear effects on the polarization may be 
expressed in terms of a series development of the 
polarization vector P with respect to  the electric field 
F:24 

P = X~ + ~ P F  (191) 

The expansion is generally truncated to  the second 
term, related to the third power of F. Experimental 
data on nonlinear effects derive from measurements 
of the dielectric displacement D, performed by su- 
perposing a weak alternating field to a strong dielec- 
tric field; the quantity accessible to  measurements 
is thus an incremental (field-dependent) dielectric 
constant EF.  

We have 

D = F + 4nP  = + 4n5F2F (192) 

and 

+=-- - eo + 12ntF2 aF 

The nonlinearity is defined as 

When F is the field produced by the solute, a direct 
determination of 12x5 is not possible and experimen- 
tal values have been used as indirect check of models 
describing r(F>. We have reported eqs 192-194 as a 
help for the reader interested in a reappraisal of the 
literature. 

1. Continuous E(F) Functions 
When the solute is a spherical ion it is immediate 

to  transform E(F) into 4r). The explicit dependence 
of E upon r is also used for nonspherical solutes, with 
or without a net positive charge. 

We report here a selection of the many functional 
expressions proposed in the literature for ~ ( r ) . ~ ~ ~ - ~ ~ ~  
The seminal papers of D e b ~ e , ~ ~ O  S a ~ k , ~ ~ ~ p ~ ~ ~  On- 
sager,z2 and K i r k ~ o o d ~ ~ ~  give the background of these 
formulations. The thermodynamics of ion solvation 
constitutes the principal (if not unique) test of their 
validity. Some expressions (e.g. ref 776) are merely 
empirical fittings of numerical results, others are 
based on intuition (e.g. refs 772 and 780) or selected 
on the basis of their simple analytical form.779 

The first attempt of a more rigorous derivation is 
due to Booth,773 on the basis of Onsager-Kirkwood- 
Frolich methods. Until recent times the Debye-Sack 
theory had been neglected because of the claims of 
inadequacy expressed by Onsager and Kirkwood, but 
it has been recently vindicated by E h r e n ~ o n ~ ~ ~  with 
a careful analysis (see also the works of Kakitani and 
Mataga794 and of Bucher and Porter781). 

The most used E(r) function is that proposed by 
Block and Walker,779 for its simplicity and because 
it has been adopted by Abboud and Taft795 and by 

where y = [/?p(n2 + 2)Fl/kT and L(r) = [coth y - l/yI 
is the Langevin function. Here n is the refractive 
index; N ,  the number of solvent molecules per unit 
volume; F ,  the field strength; T, the absolute tem- 
perature; and a and p are numerical constants (4/3 
and l/2 respectively, in the simplest formulation). 

The expression derived by Bucher and Porter reads 

withy = [&) + 21.Zi’,p/[3kTr2~(r)l and u is the volume 
occupied by a solvent molecule. The expression given 
by Ehrenson is similar to  eq 197. It must be 
remarked that even implicit transcendental expres- 
sions like eq 197 can be easily used when applied to 
the evaluation of AGel solvation energies for spherical 
ions. 

The examination of the AGel values for a set of ionic 
solutes is an indirect way of assessing the relative 
merits of the various expressions of 4r). Actually, 
the calculation of AGel benefits from the substitution 
of the step function, eq 190, with an expression for 
E ( r )  smoothing the change from E = 1 to E = E O  (bulk). 
However, the functional dependences 195-197, as 
well as several others, are almost equally effective 
under this respect. 

E h r e n ~ o n ~ ~ ~  has shown that the Block-Walker 
expression belongs to  a family of functions, all leading 
to an analytical solution for the radial potential @(r)  
of a dipole at the centre of a spherical cavity: 

(198) Z 
E,(r) = eo exp(-K,/r ) 

with Z = l/n, n = 1, 2, 3, etc., and K~ fured by the 
boundary conditions. Several n values give equally 
reasonable values of AGel (ion). Abraham et a1.797 
remarked that starting from Stiles’ &) function780 
it is possible to derive other expressions, giving 
reliable values of AGel (ion). Stiles’ function is 

b - r z  fir) = 1 - [-] b - a  
where is the dielectric constant of the internal zone 
(set equal to  21, a is the ion radius and b another 
radius at which the dielectric function assumes the 
bulk value EO. Abraham et a1.797 replace fir> with the 
following expression: 
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b - r n  fir) = 1 - [-] b - a  (201) 

with n = 2.0, 1.0, 0.5, 0.1. For each n value there is 
an optimum value of the parameter b. 

Stiles, on the other hand, remarks that a simple 
linear relationship between E, and EO gives practically 
equivalent results . 

It  is clear that the examination of the AG,1 (ion) 
values cannot give a definitive answer. Other argu- 
ments put forward in this debate (e.g. congruence 
with shell models) have an indirect impact. Quite 
probably a better insight will be possible when 
reaction field potentials for nonspherical solutes, 
obtained with accurate and reliable computer simu- 
lations, will be available. A comparison with CP, 
values computed with continuum methods will per- 
mit more precise assessment of the physical eligibility 
of the various E ( r )  functions. 

As a help for this future investigation, we have 
recently elaborated a version of the PCM procedure 
which uses E(r) functions.798 This PCM version 
maintains many of the features of the original 
isotropic version (quantum mechanical formulation, 
cavities of general shape, calculation of the electric 
field F without approximations, etc.) and accepts 
c(r) functions of any type (up to this time calculations 
have been performed with the simple Block-Walker 
and Stiles' expressions only). The most important 
difference with respect to the isotropic version is that 
the electrostatic problem is no longer treated with a 
boundary element method (BEM) but rather with a 
finite element method (FEM), to take into account 
the effects due to the three-dimensional distribution 
of apparent charges @ b  (remember that only in 
isotropic media the apparent polarization charge may 
be reduced to a surface charge a). 
2. Step Functions 

An alternate way to describe local anisotropies 
consists in replacing the one-step dielectric function 
190 with a multistep function. Within each domain 
E is constant. This is a particular case of a more 
general problem in which the whole external space 
is partitioned into exclusive domains, with sharp 
boundaries each characterized by its own dielectric 
constant. A general solution for this problem in the 
framework of quantum mechanical continuum cavity 
models has been elaborated by Bonaccorsi et al.417 
and later by Hoshi et al.lE1 These general formula- 
tions are of interest for large-scale anisotropies and 
will be considered in the next section. 

The one-layer model for a spherically symmetric 
ion is defined by 

~ = l  f o r r < a  (202) 

€ = E ,  f o r a < r < b  

The expression analogous to Born's eq 22 is in this 
case: 

with 

The one-layer expression for a dipole in a spherical 
cavity has been first derived by O ~ t e r ~ ~ ~  as a gener- 
alization of Onsager's model. The expression for a 
general charge distribution inside a spherical cavity 
with a one-layer model has been developed by Bev- 
eridge and Schnuelle;800 it is a generalization of 
Kirkwood's model (classical representation, no sol- 
vent polarization effects). A different generalization, 
to concentric multiple layer models with a single 
point charge has been considered by Abraham et 
aLaol The classical multipole expansion method, used 
by Beveridge and Schnuelle, provides formidable 
mathematical expressions when applied to the case 
of a general distribution in multilayer models (we 
note, in passing, that the apparent surface charge 
(ASC) expressions are by far simpler to  write and to 
implement in computational codes). 

Abraham and co-workers have used their model, 
and in particular the simple one-layer model, in a 
set of papers on AGe1 for spherical ions797~801-805 in a 
variety of solvents, with quite encouraging results. 
The free parameters of this model, namely the radii 
a and b and the dielectric constant E, of the layer, 
may be assigned very reasonable values; namely, a 
is the ion radius, b - a is the radius of one solvent 
molecule, E ,  = n2 (alternatively E ,  = 2). 

The same one layer model has been considered in 
a still unpublished study (Bonaccorsi et see also 
Tomasi et a1.9 with some differences with respect 
to Abraham's approach. The total values of Gsol, Hsol, 
Ssol, including also cavitation and dispersion-repul- 
sion terms, are computed, instead of AGe1, AHe1, ASe1, 
with the same set of parameters used by Abraham, 
with even better results. 

The PCM procedure permits the extension of this 
approach to polyatomic ions in nonspherical cavities 
and in particular to  ions in which the charge is 
localized in a portion of the molecule (for example 
protonated organic molecules). In these cases the 
additional layer no longer has a spherical symmetry 
and covers only a portion of the solute surface. 

There are several other papers using layered 
models. We shall not report here, although interest- 
ing under many aspects, further applications of 
spherical concentric models. We quote some ex- 
amples of extensions to  nonspherical shapes. G6mez- 
Jeria and M o r a l e s - L a g o ~ ~ ~ ~ , ~ ~ ~  have published the 
formulas for a general distribution within prolate or 
oblate ellipsoidal cavities surrounded by one or two 
layers of the same symmetry. Jayaram and Bever- 
idgeaog have considered the case of an arbitrary 
charge distribution in a coaxial dielectric continuum. 
A layered model with a nonspherical cavity has been 
formulated by Kanesaka et a1.810 and used to study 
the IR intensity of the C-H stretch in CH&1.811 The 
extension of these layered models to properties other 
than AG,,, has not yet been undertaken systemati- 
cally. 

One-layer and two-layer models are easier to  use 
than continuous E ( r )  models; on the other hand the 
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continuous description is aesthetically more appeal- 
ing, and a good 4r) model is closer to the physical 
reality than layered models. Other reasons suggest- 
ing a choice between these two options will probably 
become decisive when local anisotropy models are 
applied to different phenomena, for example of 
dynamical nature. 

3. More than One Solute Molecule 

The last type of local anisotropy we shall consider 
is due to the presence of another solute molecule. 
Formally the problem is simple when the surround- 
ing medium is represented by a continuum dielectric. 
Explicit formulation in the multipole expansion ap- 
proach, and coding of the corresponding computa- 
tional procedure, are however complex tasks. The 
apparent surface charge approach is by far more 
convenient.250 

The inclusion of local anisotropies around each 
solute is feasible, either in the c(r) or in the layered 
model. This last has been coded and applied in test 
PCM calculations. Tests on the free energy profile 
for the approach of a couple of ions (of opposite as 
well as of equal charge) have been performed. The 
results show that the monotonic energy profile given 
by the basic continuum model is modified by the 
presence of local minima, roughly corresponding to 
solvent-separated ion pairs. Models including an 
appropriate E(F) function quite probably would give 
a more realistic description of this phenomenon, often 
considered as an example showing the intrinsic 
inability of the continuum models to describe specific 
solvent effects at the molecular scale. 

The problem of two ions approaching in a con- 
tinuum medium has been considered by many au- 
thors, often using a rough version of the basic PCM 
model. More detailed studies have been performed 
e.g. by Rashin812 and by Contreras et al.813 The 
description of two or more solutes separated by the 
solvent is of primary interest in treating bimolecular 
reactions, as already observed in section VI.B. 

B. Large-Scale Inhomogeneities 
There is a wide variety of large-scale inhomogene- 

ities, regarding different areas of the physicochemical 
domains. We cannot give a systematic survey, even 
if limited to methods using a continuum model. 
Suffice it to  say that inhomogeneities of this kind are 
important in liquid-surface phenomena (liquid-air, 
liquid-liquid, liquid-solid), in the study of disper- 
sions, micelles, vesicles, capillarity phenomena, mem- 
branes, bidimensional phases, dissolution of solids, 
etc., of interest in different disciplines such as 
catalysis, electrochemistry, biochemistry and bio- 
physics, environmental sciences, etc. 

In reality all these phenomena are connected by 
some common features acting at  the molecular level. 
In many cases a simple classical formulation of the 
continuum model has been employed, and this level 
of accuracy may provide an interpretation of the basic 
aspects of the phenomenon. The evolution of the 
research leads however to  finer descriptions, in which 
the chemical details of the problem are considered. 
We shall limit ourselves to a few examples directly 

related to the quantum methods exposed in this 
review, without any claim of completeness. 

1. Two Semi-infinite Dielectrics 
The simplest case is that of two semi-infinite 

dielectrics separated by a plane. The two dielectric 
model may be applied to liquid-vapor, liquid-liquid, 
and liquid-solid systems. Near the separation sur- 
face the physicochemical parameters depend upon 
the nature of the interface, the chemical composition 
of the two subsystems, and other factors (typically 
the temperature and the presence of electric fields). 

An accurate modeling of these local conditions 
depends on the availability of experimental data and 
computer simulation results (also physical methods 
for the study of solutions may give valuable contribu- 
tions). Continuum methods exploit, prima facie, 
information coming from other sources, but may give 
a support for refinements of the model. This is one 
of the fields in which the interaction among different 
approaches, which we advocated in the Introduction, 
may give fruitful results. 

One has not, in general, much information about 
density and dielectric constant profiles in the inter- 
face region (a third factor, i.e. the occurrence of 
electric fields in the contact region between two 
neutral dielectrics,814 is generally neglected). One of 
the simplest cases is the interface between a polar 
liquid (e.g. water) and a hydrocarbon (e.g. benzene); 
for Monte Carlo simulations on this system see 

There is a small admixture of molecules 
belonging to the two phases, and the small deviations 
of density with respect to  the bulk values are limited 
to one molecular diameter. The separation surface 
is an almost perfect plane, with scattered “fingering” 
(i.e. small capillary waves of molecules of one phase 
protruding in the other one). Bonaccorsi et a1.816 have 
studied the conditions of equilibrium of linear pri- 
mary alcohols and amines (CnHan+lX with X = OH 
or NH2 and n = 1-81 at water-hydrocarbon inter- 
faces; they find a buoyancy equilibrium on the surface 
for the solutes with n > 1, with the polar head in the 
aqueous solution and the hydrocarbon tail in the 
other medium. Calculations have been performed 
with the standard PCM procedure, supplemented by 
another set of apparent charges on the separation 
surface. 

In a further study Bonaccorsi et al.817 improve the 
method and present sets of two dimensional maps of 
G for CH30H and CH3NH2 in the whole water- 
benzene system. We have already noted that the 
energetic quantity coming out from the calculation 
is a “starred” quantity (i.e. G*) in Ben-Naim’s ter- 
minology, namely a quantity computed assuming 
that the solute occupies a fured position in the liquid. 
In infinite isotropic liquids the value of G* does not 
depend upon the position one has selected: to  cal- 
culate more precisely the free energy one has to 
consider an additional term, the “liberation free 
energy”, easy to compute. In restricted systems G* 
depends on the position; in the case presented here 
it depends on the distance z of the solute from the 
interface and on the Eulerian angle S2 defining its 
orientation: G(z,Q). The improvements of the com- 
putational model mainly regard the description of the 
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portion of space not allowed to the solvent. When 
the solute is close to  the boundary surface, there may 
be not enough space to accomodate a solvent mol- 
ecule. In the case of liquid-liquid boundaries this 
space cannot be left void, therefore the boundary is 
modified by introducing a local concavity or convex- 
ity, such as to fill the void with the most appropriate 
solvent. 

Dispersion contributions, computed with a suitable 
modification of the model elaborated for isotropic 

introduce minor changes in the G(z,SZ) 
surfaces.818 F 1 0 r i s ~ ~ ~  has shown that the energy 
profile for the crossing of the boundary in water- 
benzene and similar systems is given by the combi- 
nation of electrostatic ( AG,J and cavitation (AG,,) 
effects, while dispersion-repulsion contributions play 
a minor role (for an example see ref 67). 

Unpublished studies on water-air systems have 
been performed by Bonaccorsi within the same ap- 
proach. The preliminary results on the preferred 
orientation of the solvent molecules, as well as of 
solute molecules bearing an OH group, such as CH3- 
OH and C~HSOH, are in agreement with molecular 
s i m u l a t i ~ n ~ ~ ~ - ~ ~ ~  studies and with second-harmonic 
generation e x p e r i m e n t ~ . ~ ~ ~ t ~ ~ ~  In addition, calcula- 
tions give an estimate of the surface potential within 
the suggested estimate (+80 f 60 mV)827 and not far 
from a recent experimental determination.828 How- 
ever these values depend critically upon the choice 
of the cavity radius for H atoms (a reduction of RH, 
suggested by Luque et a1.,90,357 gives a better agree- 
ment). 

A similar approach has been used for the study of 
the desolvation of a substrate molecule entering the 
lock of an enzyme.829 The enzyme is modeled as a 
large continuum dielectric body, with a planar (or 
moderately convex) surface and an indentation able 
to  host the interactive portion of the substrate 
molecule. A complete version of the electrostatic 
problem (treated with the PCM formalism, at  the 
quantum level) is accompanied by a set of faster 
versions to  be used in routine calculations. The 
primary goal of this research is in fact the elaboration 
of an index based on the molecular electronic poten- 
tial (MEP), to be used in the selection of appropriate 
enzyme-ligand interactions, a task requiring fast 
(but accurate) calculations. 

Sakurai’s group has recently considered decarboxy- 
lation reactions catalyzed by cyclodextrins with the 
aid of a two dielectric The calculation of 
the activation energy is performed at MNDO level, 
using their version of the quantum ASC model (see 
section IV.3). The intramolecular cavity of cyclodex- 
trin is approximated by a cylindrically shaped dielec- 
tric with c = 2.0. The pseudomolecular complex 
formed by the organic substrate and the cylinder is 
embedded into a medium with c = 80. The results 
agree with experimental evidence, in spite of the 
simplicity of the model. 

2. More Complex Systems 
We have delved into our files to  give this overview 

of two dielectric models, because PCM and related 
ASC approaches represent, in our opinion, the most 
advanced elaborations presently available to describe 
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chemical phenomena at liquid-liquid and liquid-gas 
interfaces. 

There is a larger number of studies on more 
complex anisotropic systems, such as a slab of liquid 
confined between two parallel conducting or dielectric 
walls, a cylindrical portion of liquid with appropriate 
boundary conditions, liquid wetting layers, etc. In 
most cases the attention is not paid to  a refinement 
of the continuum model but rather to  the specific 
properties of the system. In many studies the image 
charge approach results in being the most conve- 
nient, owing to its simplicity in the description of the 
solutes; for this reason we prefer not to  extend this 
review further by treating subjects not of direct 
pertinence. It will suffice to  repeat that also in these 
fields it is possible and convenient to  apply more 
refined continuum models to  describe chemical prop- 
erties. 

Several methodological progresses, worthy of fur- 
ther development, have appeared in the literature. 
For example we quote a study of liquid wetting 
layers, by Tarazona et al. ,830 introducing a “piecewise” 
dielectric constant, similar to those we have consid- 
ered in multilayered models of local anisotropies. 

Neither do we try to  review the applications of 
continuum electrostatic methods to  membranes, in- 
verted micelles, or vesicles; a review by Honig et 
may be suggested as a first guide in a field that has 
shown important progresses in recent years. 

C. Large-Scale Anisotropy in Homogeneous 
Dielectrics 

As the last subject of this section we shall consider 
a linear nonisotropic dielectric. In this case the 
scalar permittivity E must be replaced by a tensor E. 
The problem is of interest for crystals (the dielectric 
model may be also applied to solids), liquid crystals, 
the interior of membranes, and limited portions of 
other liquids that for any reason exhibit a local order. 

We shall consider the case of an infinite liquid, 
described by a linear nonisotropic dielectric, whose 
boundaries are limited to the solute surface and to 
infinity. Little attention has been paid to  the evalu- 
ation of the solvation energy in liquids with long- 
range anisotropy. Studies on liquid crystals, which 
represent an important example of systems with 
tensor permittivity e,  have been mainly addressed to 
the formulation of a theory of the pure l i q ~ i d . ~ ~ , 8 ~ ~ - 8 ~ ~  
When internal and reaction cavity fields are neces- 
sary, as in the extensions of Onsager and Kirkwood- 
Frolich theories for the evaluation of the permittivity, 
the reaction field is reduced to that of a distribute 
dipole density, and the formal problem is solved with 
a transformation of the coordinate system:833 

x - x’ = XE, etc. 

which is not suitable for the implementation of a 
quantum model. 

The Laplace equation for anisotropic dielectrics 
takes the form 

(204) 
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where we have chosen the suitable coordinate system 
to put E in diagonal form. This expression reduces 
to  V@ = 0 only when 

It is reasonable to  assume a step expression, 
analogous to eq 190, for our homogeneous dielectric. 
This being the basic assumption, the reaction field 
operator Th to  be inserted in the Hamiltonian 

= eYy = cZz. 

is due not only to the apparent surface charge 
distribution 0 as in the isotropic dielectric case, but 
also tc an appar$nt volume charge distribution @b 
(here 2k = ’I; + 2’).  

Mennucci et al.83g have implemented this model in 
the PCM formalism. Two versions have been con- 
sidered: one treats the electrostatic problem without 
any further approximation, and the 0 and @b charge 
distributions are determined self-consistently, in- 
cluding the polarization effects on the solute charge 
distribution @M as in the isotropic case; the other 
version considers @b as a small perturbation, and 
calculates it with perturbation theory, using the self- 
consistent expressions for @M and 0, and including 
at each SCF cycle the approximate expression of 
?’; in the Hamiltonian. The method may be consid- 
ered as an admixture of BEM and FEM techniques, 
the former used for cr, and the latter for @b. 

A comparison with the dr) PCM procedure con- 
sidered in section VIII.A.l may be of some help in 
the appreciation of the two computational strategies. 
In the 4r) problem the cr distribution disappears, and 
unless E(r) is a step function, we have instead a @b 
distribution varying in a limited range of distances. 
(When the solute is of a large size, and the net charge 
is localized, the use of a mixed model is preferable; 
however, the cr charge description is preserved for the 
portions of the solute far from the net charge.) In 
the anisotropic homogeneous problem, on the other 
hand, the @b distribution is spread out over a large 
portion of space, and the most important contribution 
t o  9k comes from g;. The computational strategy is 
thus different in the two cases. 

Computational times are definitely longer in the 
anisotropic model than in isotropic ( E  = constant), by 
a factor -5 for the simpler formulation using per- 
turbation theory for @b, and by a factor -10 for the 
exact formulation. The model has not yet been 
extensively applied to chemical problems, but some 
initial results deserve mention. The orientation of a 
polar solute in an anisotropic liquid is dictated by the 
effect of the @b distribution. When such a solute 
experiences an appropriate electronic excitation (e.g. 
n - n* excitation of a C-0 chromophore) the energy 
profile for different orientations of the solute changes 
remarkably, and the study of the evolution of the 
system after electronic excitation should include an 
extra coordinate, i.e. the orientation of the solute with 
respect to the axes of E .  

IX. Concluding Remarks 
The continuum description of the solvent has 

provided in the past some very useful models for the 
interpretation of thermochemistry, reactivity, and 
spectroscopy in solution. In the last 20 years, several 

approaches have been devised to perform accurate 
calculations of free energy surfaces as functions of 
the solute internal coordinates. Quantum chemistry 
in solution has become an almost perfect counterpart 
of the well-established quantum chemistry of isolated 
molecules. The implementation of continuum meth- 
ods in connection with different kinds of semiempiri- 
cal and ab initio treatments, and the development of 
automatic geometry optimization algorithms, will 
certainly favor the trend to consider “adding the 
solvent” as a standard option available to  quantum 
chemists. The accuracy of the results has improved, 
when all the relevant components of the solvation 
free energy (not only the electrostatic one) have been 
properly taken into account, either by specific theo- 
retical developments or by semiempirical parametri- 
zations. 

One of the distinctive advantages of continuum 
methods with respect to  MM, MC or MD, namely that 
of offering a quantum mechanical treatment of the 
solute, is now challenged by the development of 
combined force field/quantal approaches. As con- 
tinuum methods are generally much less demanding 
of computer resources, and their application is 
straightforward, they are ideally suited for the 
investigation of hypersurfaces. Moreover, the con- 
tinuous description of part of the system can be 
combined in different ways with quantal or classical 
discrete models, and with elements of macroscopic 
physics (layers, phase boundaries, anisotropies, etc). 
Such methods will be certainly part of the equipment 
of the theoretical chemist tackling biophysical or 
biochemical problems in the next future. 

Because of the consistence and relative simplicity 
of their physical foundations, the continuum models 
lend themselves to further theoretical elaborations, 
with the aim of clarifying a wealth of dynamical 
processes in photophysics and in chemical reactivity. 
Computational tools have also been provided, in order 
to  test different physical hypotheses and to quantify 
dynamical solvent effects and their dependence on 
the features of specific chemical processes: the 
answers we expect from these studies are, once more, 
on the way from physics to  chemistry. 
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